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 Basic questions
Is it possible to build an approximation, which takes into 
account all (or at least all important) saddle points for some 
model of practical relevance (e.g. Hubbard model in 2D)? 
Spoiler:  Such an approximation exists and it can be 
formulated as an instanton gas model for the field 
configurations at saddle points. It gives us correct both 
correct saddle points and their weights in the partition 
function. 

  

Both - analytically!

Knowing all relevant saddle points, which physical properties 
can we describe with this saddle point approximation? 
Spoiler 1: Instanton gas approximation gives good predictions 
for the localization of electrons and corresponding spectral 
functions, but one needs full integral over just one dominant 
thimble in order to describe the spontaneous symmetry 
breaking (at least at half filling).   
Spoiler 2:  Distribution of saddles is sharp in the 
thermodynamic limit and the instanton gas model predicts the 
dominant saddle point quite precisely. It means that the 
starting point for the simulation on dominant thimble is known 
in advance. 
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FIG. 17. Spectral functions in momentum space for full QMC
with Ising fields (top plot) and for the instanton gas model
(middle plot). Bottom plot shows the share of the main peak
in the overall spectral weight along the same profile in mo-
mentum space. Calculations were done for 12 ⇥ 12 lattice
with Nt = 256 and � = 20. Interaction strength is equal to
U = 6.0.
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Systematic study of the thimbles 
decomposition of the path integral with the 
aim to develop an effective model 
predicting the phase and weight of 
thimbles without actual QMC simulation. 

This model can be used:

1) to draw general conclusions about the 
difficulty of the sign problem; 

2) to construct approximations 
extending to the regions of the phase 
diagram, where we are unable to 
perform QMC simulations.  6x6 lattice



Hubbard	model	on	hexagonal	lattice	
Nearest-neighbor	hoppings	+	local	interaction:	
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FIG. 4. Staggered moment extrapolated to the thermody-
namic limit (see Fig. 3) for two values of the pinning field.
We have equally plotted the single particle gap in units of U .
The inset plots the staggered magnetization as obtained from
a mean-field spin density wave Ansatz.

where we do not detect magnetic ordering but we
do detect a small single particle gap.

• The QMC data in Fig. 4 shows that over a wide pa-
rameter range, the single particle gap measured in
units of the Hubbard U, tracks the staggered mag-
netization. We take this as a strong indication, that
the magnetization provides the only relevant scale
in the problem, determining directly the single par-
ticle gap. We will see below, that this conclusion,
based here on a simple, polynomial extrapolation
of the finite size data, is also obtained, if a more
refined data analysis is performed.

• The data in Fig. 4 exhibits an unusual inflection
point at approximately U/t = 4.1. Such an inflec-
tion point is clearly absent at the mean-field level
(see inset of Fig. 4). We will discuss the impli-
cations of this inflection point in the next section.
Let us finally note, that in previous calculations [1]
we were unable to resolve staggered moments lesser
than m ' 0.03. We thereby missed this inflection
point in the polynomially extrapolated magnetiza-
tion curve and concluded the presence of an inter-
mediate phase [21].

C. Finite size scaling

As mentioned above, one of the particularities of the
data presented in Fig. 4 is the occurrence of an inflec-
tion point at U/t = 4.1. It is a natural question to ask
if this rather peculiar feature may be an artifact of using
a simple polynomial fitting procedure, which one would
indeed expect to fail close to criticality. This could result
in an overestimation of the magnetization in the vicinity
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FIG. 5. Data collapse for the magnetization presented in Fig.
3. The exponents are taken for the ✏-expansion of Ref. 6. (a)
The crossing point pins down the value of Uc. (b) The data
collapse, using Uc/t = 3.78.

of the critical point between the semi-metallic and the
insulating phase of the Hubbard model. As we explain
next, arguments in favor of this conjecture are provided
by the large-N treatment of the Gross-Neveu model [5],
and the ✏-expansion around three spatial dimensions in
the equivalent Gross-Neveu-Yukawa field theory, formu-
lated in Ref. 6. Given the order parameter exponent, �,
as well as the correlation length exponent, ⌫, the stag-
gered magnetization scales as

m ' |U � Uc|
�
' ⇠��/⌫ . (9)

Using the standard scaling laws [22], the exponent �/⌫
may conveniently be expressed in terms of the anomalous
dimension for the order parameter ⌘, as

�

⌫
⌘

1

2
([d+ z]� 2 + ⌘) , (10)

where d+ z is the e↵ective dimensionality of the system.
If we assume that the Lorentz invariance is emergent at
the critical point, as it indeed is close to the upper criti-
cal dimension dup = 3 of the Gross-Neveu-Yukawa theory

F.	Assaad,		I.	Herbut,	PRX,		3,	031010	(2013)	

Semi-metal		-		AFM	insulator	transition	at		
U=3.8	κ	

van	Hove	singularity	in	density	of	states	at	μ=κ	
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Sign Problem in Hybrid Monte-Carlo Simulations 
of Graphene
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Abstract

Graphene is a well-known two-dimensional material which has a set of unique properties. Due to massless electronic excitations 
and very strong Coulomb inter-electron interaction, various phase transitions with spontaneous generation of mass gap can occur 
in graphene. The situation resembles the chiral symmetry breaking in QCD. Recently the Hybrid Monte-Carlo method was applied 
for a studying of graphene electronic properties. Several types of mass term are possible due to several kinds of phase 
transitions. Sign problem appears in fermionic determinant in case of mass term which corresponds to the excitonic phase 
transition. A brief discussion concerning ways to solve this problem is presented.

- creation operator for the electron at the site x with spin s=±1, 

Dispersion relation contains «Dirac cones» in the vicinity of K and K' points in Brillouine zone. Due to this fact the low-
energy excitations can be described by two flavours of 4-component massless Dirac fermions:

Chiral (sublattice) symmetry breaking in graphene

There are several possible channels of the «chiral symmetry» breaking in graphene. These 
channels correspond to appearance of different condensates. The following condensate are in 
the focus of research at the moment:

- antiferromagnetic condensate

- excitonic condensate

From microscopic point of view, antiferromagnetic condensate corresponds to opposite spins of electrons at different sublattices. 
Excitonic condensate corresponds to opposite charge excess at different sublattices. 

V
F
 ~ 1/300 c. So the effective coupling constant is 

α = 300/137 ~ 2. We have a theory with very 

strong instantaneous Coulomb interaction 

Hybrid Monte-Carlo simulations of graphene

We introduce «electrons» and «holes»:

After it the Hamiltonian takes the form:

where is electric charge at site x.

Interaction takes the form:

After the standart Suzuki-Trotter decomposition we arrive at the following representation of the euclidean 
partition function:

We need to introduce artificial mass gap in fermionic operator in order to make it invertible. Usually this mass term should 
correspond to the condensate which behaviour we want to study.  Crucial point in the calculations is that fermionic 
operators for electrons Mel.  and holes  Mh.    are comlex conjugated to each other  only in the case of 
antiferromagnetic mass term. 

Therefore, if we want to study excitonic condensate, the sign problem appears due to the corresponding mass term in fermionic operator.

Possible ways to solve the problem

We may use rational Hybrid Monte-Carlo.  In this case, we artificially increase number of 
fermionic flavoours up to 4 (two «electrons» and two «holes»):

Ф is a phase of the det (Mel. Mh.) . It can be transferred to observable quantity.

We may simulate the theory without any artificial 
mass term. Mass gap can be introduced 
«geometrically» by special boundary conditions or 
special lattice sizes. This method is based on two 
facts:
1) Dirac points in graphene are not at zero 
momentum but at two special points (K and K') in 
the Brillouine zone.
2) Any finite size lattice allows only the discrete set 
of particle's momentum. The allowed values of 
momentum can or can not cover the K-points 
depending on the geometry of the lattice.

This gap is controlled by the size of the lattice. The larger is 
the lattice, the smaller is the gap.

The problem is that «geometrical» mass gap doesn't 
inroduce the primer for the symmetry breaking. So we still are 
unable to detect the formation of any condensates. 

The figure demonstrates the arrangement of possible momentum values inside the Brillouine 
zone. If the lattice sizes are not equal to 6x, the K-points are not covered by latice momentum 
values therefore, we have a «geometrical» mass gap.

But we can use fluctuations of order parameter:

to detect the phase transition.

At the transition point, the spatial correlation radius of the order parameter should tend to infinity. 
Also It is possible to search for the existence of the Goldstone bosons.
Therefore, one should measure the time:                                                    or spatial:

correlators to detect the phase transition

Graphene electronic properties: 

We start from the tight-binding Hamiltonian for the electrons at p
z
 orbitals:

This figure demonstates the distribution of 
the phase Ф for several values of mass. 
Mass term corresponds to the excitonic 
phase transition.

This concept is especially appropriate for this situation, because we are always interested in 
the limit of the zero artificial mass. So the mass term in fermionic operator is realtively small 
and phase of the fermionic operator doesn't fluctuate too huge., 

Here the dependence of the distbution 
width on the mass is shown. The 
distribution width rapidly grows with  the 
mass increases. We should work with 
as small masses as possible.  

Free	fermions	with	only	nearest-neighbor	hoppings:	
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:

e��Un̂"n̂# =
1

2

X

⌫=±1

e2i⇠⌫(n̂"+n̂#�1)� 1
2 �U(n̂"+n̂#�1), (5)

tan2 ⇠ = tanh(
�U

4
).

Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):

(
ĉx,", ĉ
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x," ! âx, â†x,
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†
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where the sign in the second line alternates depending on
the sublattice. The Hamiltonian (8) acquires the follow-
ing form after the transition to the new variables :
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where n̂x,el. = â†
x
âx and n̂x,h. = b̂†

x
b̂x are the particle

number operators for electrons and holes respectively.
Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
both cases. In the case of the discrete transformation (5),
we arrive at the following representation of the partition
function (1) as a sum over all possible values of ⌫x,t:
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where Del. and Dh. are fermionic operators for electrons
and holes respectively:
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Both fermionic operators are Ns⇥Ns matrices where Ns

is the number of lattice sites in space, h is the matrix
of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns

matrix diag
�
e�2i⇠⌫x,t

�
includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
In the case of continuous auxiliary fields, we will write

the HS transformation in more general way employing
both real (7) and complex (6) exponents:
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Parameter ↵ 2 [0, 1] defines the balance between real
and complex exponents in the integral. The first four-
fermionic term can be transformed into bilinear using

Hubbard model on bipartite 
lattice (2)Quantum	Monte	Carlo	
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ây + b̂

†
x
ây + h.c.

⌘
(6)
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Ĥtb = �

X

<x,y>,s

�
â
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(ĉ†
x�
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
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Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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ĉx,#, ĉ
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FIG. 1. Average sign in BSS-QMC algorithm, taken from
the ALF (Algorithm for lattice fermions) package [41]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.

sition:

e��Ĥ
⇡ ...e��K̂e��ĤU e��K̂e��ĤU ...+O(�2) (9)

where K̂ is the collection of all bilinear fermionic terms
in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term
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ŝ2
x
+ (1� ↵)Uŝx, (10)

where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.

The details of the construction of the path integral are
straightforward and can be found in [43, 45, 46]. Here
we simply state the explicit form of the partition function
which we have used in our calculations:
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where the fermionic operators are given by
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In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle
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âx = âx," (10)

b̂x =

(
â†
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Fierz	identities:	

3

over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:

e��Un̂"n̂# =
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2
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⌫=±1

e2i⇠⌫(n̂"+n̂#�1)� 1
2 �U(n̂"+n̂#�1), (5)

tan2 ⇠ = tanh(
�U

4
).

Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):

(
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where the sign in the second line alternates depending on
the sublattice. The Hamiltonian (8) acquires the follow-
ing form after the transition to the new variables :
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number operators for electrons and holes respectively.
Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
both cases. In the case of the discrete transformation (5),
we arrive at the following representation of the partition
function (1) as a sum over all possible values of ⌫x,t:
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Both fermionic operators are Ns⇥Ns matrices where Ns

is the number of lattice sites in space, h is the matrix
of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns
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includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
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both real (7) and complex (6) exponents:
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sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:

e�
�
2

P
x,y Ux,yn̂xn̂y ⇠=

Z
D�xe

� 1
2�

P
x,y �xU

�1
xy �yei

P
x �xn̂x ,(6)

e
�
2

P
x,y Ux,yn̂xn̂y ⇠=

Z
D�xe

� 1
2�

P
x,y �xU

�1
xy �ye

P
x �xn̂x .(7)

It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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where the sign in the second line alternates depending on
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Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
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the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
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we arrive at the following representation of the partition
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of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns
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includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
In the case of continuous auxiliary fields, we will write

the HS transformation in more general way employing
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
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Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
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advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
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Ĥtb = �

X

<x,y>

⇣
â
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Ĥ = �

X

hx,yi

(â†
x
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Ĥint =
U

2

X

x

(n̂e � n̂h)
2 (2)

â
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†
x," ! âx, â
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:
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Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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†
x,# ! ±b̂†x,±b̂x

, (9)

where the sign in the second line alternates depending on
the sublattice. The Hamiltonian (8) acquires the follow-
ing form after the transition to the new variables :
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ing to purely real exponents. This and similar repre-
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
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Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
both cases. In the case of the discrete transformation (5),
we arrive at the following representation of the partition
function (1) as a sum over all possible values of ⌫x,t:
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Both fermionic operators are Ns⇥Ns matrices where Ns

is the number of lattice sites in space, h is the matrix
of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns

matrix diag
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e�2i⇠⌫x,t
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includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
In the case of continuous auxiliary fields, we will write

the HS transformation in more general way employing
both real (7) and complex (6) exponents:
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Parameter ↵ 2 [0, 1] defines the balance between real
and complex exponents in the integral. The first four-
fermionic term can be transformed into bilinear using
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:
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Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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FIG. 1. Average sign in BSS-QMC algorithm, taken from
the ALF (Algorithm for lattice fermions) package [41]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.

sition:

e��Ĥ
⇡ ...e��K̂e��ĤU e��K̂e��ĤU ...+O(�2) (9)

where K̂ is the collection of all bilinear fermionic terms
in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term
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where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.

The details of the construction of the path integral are
straightforward and can be found in [43, 45, 46]. Here
we simply state the explicit form of the partition function
which we have used in our calculations:
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where the fermionic operators are given by
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In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle
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ŝ2
x
+ (1� ↵)Uŝx, (10)
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(āOib)
�
c̄Oid

�
=

X

k

Cik (āOkd)
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â†
x
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ây + h.c.

⌘
(9)
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Ĩ
Dx̃e�S(x̃)

����
x̃=x⌧ (x̄)

=

Z

Ī
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Fierz	identities:	

 Trotter decomposition:

Path integrals for the Hubbard model

 Subsequently, the auxiliary field is introduced via the Hubbard-Stratonovich transformation:

̂q = ̂nel. − ̂nh.

Purely Gaussian bosonic action:
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operator,  is the hopping parameter, U > 0 is the Hub-
bard interaction, and µ is the chemical potential. From
now on, we will express all dimensional parameters like
U , inverse temperature �, etc. in the units of hopping
. This form of the Hamiltonian will be useful for the
functional integral approach where the interaction term
will be decomposed by the introduction of an auxiliary
bosonic field. Away from half-filling, µ = 0, the theory
su↵ers from the notorious sign problem. This is a generic
feature of a large class of many-body theories and in or-
der to deal with this problem, a variety of di↵erent meth-
ods and techniques have been devised [12, 24–32]. The
case of finite chemical potential will only briefly be com-
mented on, while the case of half-filling will be the main
focus in all subsequent numerical and analytical calcula-
tions.

At half-filling, this model is known to exhibit a
semimetal-to-insulator transition ([22, 23]). At large U ,

the Hubbard model on the hexagonal lattice exhibits
AFM order while at small U it is a Dirac semimetal with
no long-range order. The critical coupling, Uc, at which
this transition takes place, defines an appropriate phys-
ical scale for the interaction strength. In the functional
integral approach, not only can one take into account
all quantum fluctuations which accurately describe both
phases, but one can also employ semi-classical methods.
These methods rely on knowledge of the stationary points
of the action and fluctuations around the solutions to
these saddle-point equations. One, in principle, could
ask how the character and importance of these saddle-
point solutions vary as the system passes through the
phase transition. This is one of the questions we have
addressed in this paper.

I.2. Path Integral Formulation

This study involves the path integral formulation of
the Hubbard model. Previous studies have detailed this
construction [8, 33], which we briefly review here. The
approach starts with the standard expression for the par-
tition function as the trace of the quantum Boltzmann
weight

Z = Tr (e��Ĥ). (2)

Denoting the hopping term in (1) as Ĥ0 and the Hubbard
term as ĤU , one performs the following Trotter decom-
position of the Boltzmann weight (2)
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resolutions of the identity are introduced, one between
each exponential factor, and the matrix elements of the
exponential factors are then computed. This is straight-
forward for the kinetic term, since Ĥ0 is bilinear in the
fermionic operators. To deal with the four-fermion inter-
action term, continuous auxiliary bosonic fields are in-
troduced at each Euclidean time slice through the usual
Gaussian Hubbard-Stratonovich (HS) transformation
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FIG. 4. Histograms depicting the relative contributions of
the various N -instanton saddles to the full partition func-
tion. The horizontal axis corresponds to the action of an
N -instanton solution, o↵set by an amount equal to the action
of the observed saddle with the least number of instantons.
One can clearly see that the minimal number of observed in-
stantons increases with increasing U . These calculations were
performed on a 6⇥ 6 lattice with N⌧ = 512, � = 20.

position (7) at half-filling, where the sign problem is ab-
sent and all thimbles are confined to the real subspace
RN . We first generate configurations of the continuous
bosonic auxiliary fields according to their weight e�S ,
where

S = SB � ln(detMel. detMh.). (11)

In the next stage, we evolve the auxiliary fields according
to the gradient flow equations in the inverse direction

d�

dt
= �@S

@�
(12)

starting from each of these QMC-generated field configu-
rations. These flows converge to the local minima of the
action within RN , which are, of course, just the relevant
saddle points. At the end of such a procedure, we ob-
tain a set of saddle point field configurations, distributed
according to their relative weight in the full partition
function: Z�/Z. This distribution can be plotted as the
histogram of the actions of these various saddle point
field configurations. The technical details of this proce-
dure as well as some additional checks (e.g. the question

FIG. 5. Visualization of the �x,⌧ field for the saddle point
configuration with one instanton. The widths of the vertical
spindles correspond to the value of |�x,⌧ | at a given spatial
lattice site and time step in Euclidean time. For clarity, we
only draw the spindles if |�x,⌧ | > ✏, where ✏ is some suitably
small threshold. In order to clearly illustrate the spatial po-
sitions of the spindles within the lattice, we also draw their
projections on the ⌧ = 275 plane. Calculations were carried
out on a 6 ⇥ 6 lattice with interaction strength U = 5.0,
N⌧ = 512 and � = 20.

of ergodicity of QMC generator and the continuum limit)
can be found in Appendix A.
In general, the number and the form of the saddle point

configurations critically depend on the way in which we
introduce the auxiliary fields [13] . In this paper, we
are interested in an analytical saddle point approxima-
tion. Thus, we employ the specific HS decomposition,
where the scalar auxiliary field � is coupled to the charge
density. In this particular case, the saddle points are
especially simple, as their histogram can be seen to be
a collection of equidistant discrete peaks, as clearly dis-
played in Fig. 4. This regular saddle structure makes
the creation of an analytical saddle-point approximation
relatively straightforward.

II.1. Individual instantons

The discrete structure of the histograms which char-
acterize the values of the action of the saddle points has
a particularly simple explanation. As was already shown
in our previous work [13], all non-vacuum saddle points
for this particular choice of the HS transformation (4) are
formed by a collection of individual localized field config-
urations. For convenience, we repeat here the plot, show-
ing this type of configuration for the auxiliary bosonic
field (Fig. 5). One can clearly see that �x,⌧ is localized
both in Euclidean time and in space. This field configu-
ration is the solution for the Euclidean equations of mo-
tions for the auxiliary field �x,⌧ following from the action
(11). We will henceforth refer to this field configuration
as an instanton. The detailed reasons for this are out-
lined in Appendix B. The one subtlety is that we should
take into account the back-reaction from the fermionic

We will work mostly with hexagonal lattice (a bit 
simpler construction of saddle points): 
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V. SADDLE POINTS STUDY

V.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of what the thimbles decompo-
sition (4) looks like as we approach both the thermody-
namic limit in spatial volume and the continuum limit in
Euclidean time. Unfortunately, at large lattice volumes,
the fully analytical approach for finding saddle points (as
was done in [54] on lattices with up to four sites) does not
work. Thus, in this study we are using a completely dif-
ferent approach which is based on importance sampling
and fast solutions of the GF equations, using the cal-
culations of the derivatives of the fermionic determinant
described in section III.

At half-filling, this method starts with the generation
of lattice configurations using standard hybrid Monte
Carlo (HMC) techniques. After this, we numerically in-
tegrate the GF equations for each field configuration for
a finite flow time, in order to reach the local minimum
of the action. At half filling, when thimbles are bounded
within RN , the local minimum of the action always cor-
responds to a relevant saddle point. At the end of this
sequence of steps, the distribution of lattice ensembles,
taken after employing the GF procedure, gives an ac-
curate characterization of the relevant saddle points at
half-filling if the initial set of configurations was ergodic.
An example of such a process is shown in Fig. 3. After
generating configurations using HMC, one can observe
the approach to the saddle point in our gradient flow
routine. As noted, the real part of the action should
monotonically decrease and eventually, at a certain flow
time, converge to the value at the saddle. In general, the
method scales similar to the Schur complement solver as
N3

s
N⌧ .
A possible source of systematic error in our lattice set

up is the discretization in Euclidean time that results
from the Trotter decomposition. Thus, we first checked
that we have already e↵ectively arrived at the contin-
uum limit in Euclidean time. In Fig. 4, the plot shows
the histogram of the distribution of the action for the
field configurations after GF. As the initial configurations
were generated using HMC, the height of each bar corre-
sponds to the exact weight of the thimble attached to the
corresponding saddle point whose value of the action is
denoted by the position of the bar. In Fig. 4 we display
the histograms for two lattice spacings at fixed �. The
results are almost identical, and thus we can claim that
with N⌧ = 256 at � = 20, we are already close enough
to the continuum limit in Euclidean time. This gives us
confidence that our study of the features of the saddle
points and thimbles is independent of the step size in
Euclidean time. We will use the same style of plots to
characterize the structure of the thimbles decomposition
below.

We now proceed to study saddle points at di↵erent ↵.
One important thing to note is that at half-filling, we
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cannot faithfully sample the path integral at the extreme
values ↵ = 1.0 and ↵ = 0.0. In both cases (see [53, 54,
57]), the product of fermionic determinants is equal to
the square of some real-valued function

detMel. detMh.|↵=0,1;µ=0 = F 2. (30)

Thus only one constraint, F = 0, needs to be satisfied
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Due to a more e�cient calculation of the exact deriva-
tives of the fermionic determinant, we are now able to
reveal the construction of the Lefschetz thimble decom-
position on large lattices and extrapolate our results to
the thermodynamic limit. This also represents the main
di↵erence of our paper from earlier attempts to apply the
Lefschetz thimbles decomposition to the Hubbard model
[38], where the thimbles decomposition was not optimised
and only one thimble, out of many important ones, was
taken into account. As a result, those simulations actu-
ally did not represent a full calculation of the functional
integral, but rather represented only corrections to dy-
namical mean field theory (DMFT) results. Using a com-
plete study of the saddle point structure of the Hubbard
model, and identifying the advantageous regions in pa-
rameter space, one can safely proceed to address the sign
problem using Lefschetz thimbles.

We start with a short introduction to the formalism,
and proceed with the description of the method to solve
the gradient flow equations for Wilson and staggered
fermions. After this, we describe the application of the
technique to the Hubbard model on the hexagonal lat-
tice. First, we make a detailed study of the saddle points,
which is an essential ingredient of the Lefschetz thimbles
method. In particular, we explore the dependence of sad-
dles on volume, the Hubbard coupling U , and chemical
potential. Among other things, we discuss at length the
algorithms used to search for saddle point configurations
away from half-filling, when saddle points are shifted into
complex space CN . Finally, in order to support our con-
clusions concerning the role of di↵erent saddle points,
we perform Monte Carlo calculations over manifolds in
complex space and compare results with exact diagonal-
ization. In addition to that, we show that the average
sign can be substantially increased even in comparison
with BSS-QMC. This fact means that we can potentially
construct a superior algorithm for dealing with the sign
problem, if the additional computational costs associated
with the gradient flow and integration over curved man-
ifolds in complex space are improved upon.

II. LEFSCHETZ THIMBLES FORMALISM

Let us first consider the complexification of the fields
appearing in the functional integral (1), � 2 CN . This
amounts to a shift of the contour of integration into com-
plex space. We are allowed to do so, as Cauchy’s theorem
tells us that one can choose any appropriate contour in
complex space as long as the integral still converges and
no poles of the integrand are crossed during this shift. As
we will demonstrate, both of these conditions are satis-
fied. We now introduce one particularly useful represen-
tation, known as the Lefschetz thimble decomposition of

the partition function [17, 18],

Z =

Z

RN

D� e�S[�] =
X

�

k�Z�,

where Z� =

Z

I�

D� e�S[�], (4)

and � labels all complex saddle points z� 2 CN of the
action, which are determined by the condition

@S

@�

����
�=z�

= 0. (5)

The integer-valued coe�cients k�, are the intersection
numbers and I� are the Lefschetz thimble manifolds at-
tached to the saddle points z�. These manifolds, de-
fined below, are the generalization of the contours of
steepest descent in the theory of asymptotic expansions.
We stress that if the saddle points are non-degenerate
(det @2S/@�0@�

��
�=z�

6= 0) and isolated, the relation (4)

holds (for a generalization to the case of gauge theory see
[18]).
The Lefschetz thimble manifold associated with a given

saddle point is the union of all solutions of the following
di↵erential equation

d�

dt
=

@S

@�
, (6)

known as the gradient flow (GF) equations, which sat-
isfy the following boundary condition: � 2 I� : �(t !
�1) ! z�. Just as we made an analogy between the
thimble and the contour of steepest descent, there is a
second manifold associated with each saddle point which
is analogous to the contour of steepest ascent. This man-
ifold is known as the anti-thimble, K�, and consists of all
possible solutions of the GF equations (6) which end up
at a given saddle point z�: � 2 K� : �(t) = �,�(t !

+1) ! z�. The intersection number k� is defined by
counting the number of intersections of K� with the orig-
inal integration domain: RN , k� = hK�,RN

i. An exam-
ple scheme of thimbles and anti-thimbles is drawn in the
Fig. 1.
It is worth noting that thimbles and anti-thimbles are

both real, N -dimensional manifolds embedded in CN .
We now state two key properties of the thimbles, which
follow from (6) coupled with the fact that the action,
S, is regarded as a holomorphic function of the complex
fields. These properties are that the real part of the ac-
tion, ReS, monotonically increases along the thimble,
starting from the saddle point and the imaginary part
of the action, ImS, stays constant along it. The first
property is essential in guaranteeing the convergence of
the individual integrals in (4), while the second one ob-
viously makes the method attractive with regards to the
weakening of the sign problem. Using these crucial prop-
erties, it follows that neither thimbles nor anti-thimbles
can intersect each other, no two saddle points can, in gen-
eral, be connected by a thimble (with the very important
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Examples of saddles for the Hubbard model on 
hexagonal lattice: spin-coupled field (1) 
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(â†
x
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âx,s

�
(5)
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��Ĥ(2)e
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:
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tan2 ⇠ = tanh(
�U

4
).

Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
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(
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ing to purely real exponents. This and similar repre-
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plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
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Now let’s turn to the appearance of the sign prob-
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FIG. 1. Average sign in BSS-QMC algorithm, taken from
the ALF (Algorithm for lattice fermions) package [41]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.

sition:

e��Ĥ
⇡ ...e��K̂e��ĤU e��K̂e��ĤU ...+O(�2) (9)

where K̂ is the collection of all bilinear fermionic terms
in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term
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where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.

The details of the construction of the path integral are
straightforward and can be found in [43, 45, 46]. Here
we simply state the explicit form of the partition function
which we have used in our calculations:
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where the fermionic operators are given by
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In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle
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FIG. 1. Average sign in BSS-QMC algorithm, taken from
the ALF (Algorithm for lattice fermions) package [41]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.
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⌘
(14)

e�
�
2

P
x,y Ux,yn̂xn̂y ⇠=

Z
D�xe

� 1
2�

P
x,y �xU

�1
xy �yei

P
x �xn̂x , (15)

e
�
2

P
x,y Ux,yn̂xn̂y ⇠=

Z
D�xe

� 1
2�

P
x,y �xU

�1
xy �ye

P
x �xn̂x (16)

1

Fierz	identities:	

Hubbard model on bipartite 
lattice (2)Quantum	Monte	Carlo	
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ây + b̂

†
x
b̂y + h.c.) +

U

2

X

x

(n̂x,el. � n̂x,h.)
2 + µ

X

x

(n̂x,el. � n̂x,h.)

U

2
(n̂el. � n̂h.)

2 =
↵U

2
(n̂el. � n̂h.)

2 � (1� ↵)U

2
(n̂el. + n̂h.)

2 + (1� ↵)U(n̂el. + n̂h.)

Z =

Z
D�x,t�x,te

�S↵ detMel. detMh.

S↵(�x,t,�x,t) =
X

x,t

�
2
x,t

2↵�U
+
X

x,t

(�x,t � (1� ↵)�U)2

2(1� ↵)�U
(14)

Mel. = I +
NtY

t=1

�
e
��(h+µ)diag

�
e
i�x,t+�x,t

��

Mh. = I +
NtY

t=1

�
e
��(h�µ)diag

�
e
�i�x,t+�x,t

��
(15)

S = S↵ � ln(detMel. detMh.) (16)

Z (�, µ, . . . ) =

Z

RN

d
N
xe

�S(�,µ,...,x) (17)

x 2 CN

Z (�, µ, . . . ) =
X

�

k� (�, µ, . . . )Z� (�, µ, . . . )

Z� (�, µ, . . . ) =

Z

I�(�,µ,... )
d
N
xe

�S(�,µ,...,x)

�

z� (�, µ, . . . ) 2 C

2
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ây,s + â
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�â
†
x,#, x 2 sublattice 1

(8)
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3

over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:
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⌫=±1

e2i⇠⌫(n̂"+n̂#�1)� 1
2 �U(n̂"+n̂#�1), (5)

tan2 ⇠ = tanh(
�U

4
).

Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:

Ĥ = �
X

hx,yi,�

ĉ†
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):

(
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†
x,# ! ±b̂†x,±b̂x

, (9)

where the sign in the second line alternates depending on
the sublattice. The Hamiltonian (8) acquires the follow-
ing form after the transition to the new variables :
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x
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number operators for electrons and holes respectively.
Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
both cases. In the case of the discrete transformation (5),
we arrive at the following representation of the partition
function (1) as a sum over all possible values of ⌫x,t:
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Both fermionic operators are Ns⇥Ns matrices where Ns

is the number of lattice sites in space, h is the matrix
of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns

matrix diag
�
e�2i⇠⌫x,t

�
includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
In the case of continuous auxiliary fields, we will write

the HS transformation in more general way employing
both real (7) and complex (6) exponents:
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matrix diag
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includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
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Parameter ↵ 2 [0, 1] defines the balance between real
and complex exponents in the integral. The first four-
fermionic term can be transformed into bilinear using
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:
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Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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where the sign in the second line alternates depending on
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ây + b̂†

x
b̂y) +

U

2

X

x

(n̂x,el. � n̂x,h.)
2 +

+µ
X

x

(n̂x,el. � n̂x,h.), (10)

where n̂x,el. = â†
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both cases. In the case of the discrete transformation (5),
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Ĥ = �
X

hx,yi

(â†
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FIG. 1. Average sign in BSS-QMC algorithm, taken from
the ALF (Algorithm for lattice fermions) package [41]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.

sition:

e��Ĥ
⇡ ...e��K̂e��ĤU e��K̂e��ĤU ...+O(�2) (9)

where K̂ is the collection of all bilinear fermionic terms
in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term
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ŝ2
x
+ (1� ↵)Uŝx, (10)

where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.

The details of the construction of the path integral are
straightforward and can be found in [43, 45, 46]. Here
we simply state the explicit form of the partition function
which we have used in our calculations:

Zc=
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where the fermionic operators are given by
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N⌧Y
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. (14)

In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle
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Ĥint =
U

2

X

x

(n̂" + n̂# � 1)2 (3)

Ĥint =
U

2

X

x

(n̂e � n̂h)
2 (4)
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Fierz	identities:	

 Trotter decomposition:

Path integrals for the Hubbard model
Hubbard	model	on	hexagonal	lattice	
Nearest-neighbor	hoppings	+	local	interaction:	
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âx,s

�
(5)
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FIG. 4. Staggered moment extrapolated to the thermody-
namic limit (see Fig. 3) for two values of the pinning field.
We have equally plotted the single particle gap in units of U .
The inset plots the staggered magnetization as obtained from
a mean-field spin density wave Ansatz.

where we do not detect magnetic ordering but we
do detect a small single particle gap.

• The QMC data in Fig. 4 shows that over a wide pa-
rameter range, the single particle gap measured in
units of the Hubbard U, tracks the staggered mag-
netization. We take this as a strong indication, that
the magnetization provides the only relevant scale
in the problem, determining directly the single par-
ticle gap. We will see below, that this conclusion,
based here on a simple, polynomial extrapolation
of the finite size data, is also obtained, if a more
refined data analysis is performed.

• The data in Fig. 4 exhibits an unusual inflection
point at approximately U/t = 4.1. Such an inflec-
tion point is clearly absent at the mean-field level
(see inset of Fig. 4). We will discuss the impli-
cations of this inflection point in the next section.
Let us finally note, that in previous calculations [1]
we were unable to resolve staggered moments lesser
than m ' 0.03. We thereby missed this inflection
point in the polynomially extrapolated magnetiza-
tion curve and concluded the presence of an inter-
mediate phase [21].

C. Finite size scaling

As mentioned above, one of the particularities of the
data presented in Fig. 4 is the occurrence of an inflec-
tion point at U/t = 4.1. It is a natural question to ask
if this rather peculiar feature may be an artifact of using
a simple polynomial fitting procedure, which one would
indeed expect to fail close to criticality. This could result
in an overestimation of the magnetization in the vicinity
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3. The exponents are taken for the ✏-expansion of Ref. 6. (a)
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collapse, using Uc/t = 3.78.

of the critical point between the semi-metallic and the
insulating phase of the Hubbard model. As we explain
next, arguments in favor of this conjecture are provided
by the large-N treatment of the Gross-Neveu model [5],
and the ✏-expansion around three spatial dimensions in
the equivalent Gross-Neveu-Yukawa field theory, formu-
lated in Ref. 6. Given the order parameter exponent, �,
as well as the correlation length exponent, ⌫, the stag-
gered magnetization scales as

m ' |U � Uc|
�
' ⇠��/⌫ . (9)

Using the standard scaling laws [22], the exponent �/⌫
may conveniently be expressed in terms of the anomalous
dimension for the order parameter ⌘, as

�

⌫
⌘

1

2
([d+ z]� 2 + ⌘) , (10)

where d+ z is the e↵ective dimensionality of the system.
If we assume that the Lorentz invariance is emergent at
the critical point, as it indeed is close to the upper criti-
cal dimension dup = 3 of the Gross-Neveu-Yukawa theory
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Graphene is a well-known two-dimensional material which has a set of unique properties. Due to massless electronic excitations 
and very strong Coulomb inter-electron interaction, various phase transitions with spontaneous generation of mass gap can occur 
in graphene. The situation resembles the chiral symmetry breaking in QCD. Recently the Hybrid Monte-Carlo method was applied 
for a studying of graphene electronic properties. Several types of mass term are possible due to several kinds of phase 
transitions. Sign problem appears in fermionic determinant in case of mass term which corresponds to the excitonic phase 
transition. A brief discussion concerning ways to solve this problem is presented.

- creation operator for the electron at the site x with spin s=±1, 

Dispersion relation contains «Dirac cones» in the vicinity of K and K' points in Brillouine zone. Due to this fact the low-
energy excitations can be described by two flavours of 4-component massless Dirac fermions:

Chiral (sublattice) symmetry breaking in graphene

There are several possible channels of the «chiral symmetry» breaking in graphene. These 
channels correspond to appearance of different condensates. The following condensate are in 
the focus of research at the moment:

- antiferromagnetic condensate

- excitonic condensate

From microscopic point of view, antiferromagnetic condensate corresponds to opposite spins of electrons at different sublattices. 
Excitonic condensate corresponds to opposite charge excess at different sublattices. 

V
F
 ~ 1/300 c. So the effective coupling constant is 

α = 300/137 ~ 2. We have a theory with very 

strong instantaneous Coulomb interaction 

Hybrid Monte-Carlo simulations of graphene

We introduce «electrons» and «holes»:

After it the Hamiltonian takes the form:

where is electric charge at site x.

Interaction takes the form:

After the standart Suzuki-Trotter decomposition we arrive at the following representation of the euclidean 
partition function:

We need to introduce artificial mass gap in fermionic operator in order to make it invertible. Usually this mass term should 
correspond to the condensate which behaviour we want to study.  Crucial point in the calculations is that fermionic 
operators for electrons Mel.  and holes  Mh.    are comlex conjugated to each other  only in the case of 
antiferromagnetic mass term. 

Therefore, if we want to study excitonic condensate, the sign problem appears due to the corresponding mass term in fermionic operator.

Possible ways to solve the problem

We may use rational Hybrid Monte-Carlo.  In this case, we artificially increase number of 
fermionic flavoours up to 4 (two «electrons» and two «holes»):

Ф is a phase of the det (Mel. Mh.) . It can be transferred to observable quantity.

We may simulate the theory without any artificial 
mass term. Mass gap can be introduced 
«geometrically» by special boundary conditions or 
special lattice sizes. This method is based on two 
facts:
1) Dirac points in graphene are not at zero 
momentum but at two special points (K and K') in 
the Brillouine zone.
2) Any finite size lattice allows only the discrete set 
of particle's momentum. The allowed values of 
momentum can or can not cover the K-points 
depending on the geometry of the lattice.

This gap is controlled by the size of the lattice. The larger is 
the lattice, the smaller is the gap.

The problem is that «geometrical» mass gap doesn't 
inroduce the primer for the symmetry breaking. So we still are 
unable to detect the formation of any condensates. 

The figure demonstrates the arrangement of possible momentum values inside the Brillouine 
zone. If the lattice sizes are not equal to 6x, the K-points are not covered by latice momentum 
values therefore, we have a «geometrical» mass gap.

But we can use fluctuations of order parameter:

to detect the phase transition.

At the transition point, the spatial correlation radius of the order parameter should tend to infinity. 
Also It is possible to search for the existence of the Goldstone bosons.
Therefore, one should measure the time:                                                    or spatial:

correlators to detect the phase transition

Graphene electronic properties: 

We start from the tight-binding Hamiltonian for the electrons at p
z
 orbitals:

This figure demonstates the distribution of 
the phase Ф for several values of mass. 
Mass term corresponds to the excitonic 
phase transition.

This concept is especially appropriate for this situation, because we are always interested in 
the limit of the zero artificial mass. So the mass term in fermionic operator is realtively small 
and phase of the fermionic operator doesn't fluctuate too huge., 

Here the dependence of the distbution 
width on the mass is shown. The 
distribution width rapidly grows with  the 
mass increases. We should work with 
as small masses as possible.  

Free	fermions	with	only	nearest-neighbor	hoppings:	

Hubbard	model	on	hexagonal	lattice(1)	
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Free	fermions	with	only	nearest-neighbor	hoppings:	

 Freedom of choice for the auxiliary field (type of the Hubbard-Stratonovich decomposition):

 Bosonic part of the action: Gaussian
 Fermionic operator

̂cA/B,el. = ̂cA/B,↑ ̂cA/B,h. = ± ̂c†
A/B,↓

̂q = ̂nel. − ̂nh.ϕ χ ̂s3 = ̂nel. + ̂nh. is coupled to  is coupled to 
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Ĥtb = �

X

<x,y>

⇣
â
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��Ĥ(4)e
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��Ĥ(2)e
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ĉx,", ĉ
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3

over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:

e��Un̂"n̂# =
1

2

X

⌫=±1

e2i⇠⌫(n̂"+n̂#�1)� 1
2 �U(n̂"+n̂#�1), (5)

tan2 ⇠ = tanh(
�U

4
).

Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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ĉy� + U

X

x

n̂x"n̂x# �

�
✓
U

2
� µ

◆X

x

(n̂x" + n̂x# � 1). (8)

The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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where the sign in the second line alternates depending on
the sublattice. The Hamiltonian (8) acquires the follow-
ing form after the transition to the new variables :
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where n̂x,el. = â†
x
âx and n̂x,h. = b̂†

x
b̂x are the particle

number operators for electrons and holes respectively.
Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
both cases. In the case of the discrete transformation (5),
we arrive at the following representation of the partition
function (1) as a sum over all possible values of ⌫x,t:
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Both fermionic operators are Ns⇥Ns matrices where Ns

is the number of lattice sites in space, h is the matrix
of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns

matrix diag
�
e�2i⇠⌫x,t

�
includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
In the case of continuous auxiliary fields, we will write

the HS transformation in more general way employing
both real (7) and complex (6) exponents:
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Parameter ↵ 2 [0, 1] defines the balance between real
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Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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Ĥ = �
X

hx,yi

(â†
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x
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âx and n̂x,h. = b̂†

x
b̂x are the particle

number operators for electrons and holes respectively.
Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
both cases. In the case of the discrete transformation (5),
we arrive at the following representation of the partition
function (1) as a sum over all possible values of ⌫x,t:

Zd =
X

⌫x,t

detDel.(⌫x.t) detDh.(⌫x,t), (11)

where Del. and Dh. are fermionic operators for electrons
and holes respectively:

Del.(⌫x,t) = I +
NtY

t=1

⇣
e��(h+µ)diag

�
e2i⇠⌫x,t

�⌘
,

Dh.(⌫x,t) = I +
NtY

t=1

⇣
e��(h�µ)diag

�
e�2i⇠⌫x,t

�⌘
. (12)

Both fermionic operators are Ns⇥Ns matrices where Ns

is the number of lattice sites in space, h is the matrix
of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns

matrix diag
�
e�2i⇠⌫x,t

�
includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
In the case of continuous auxiliary fields, we will write

the HS transformation in more general way employing
both real (7) and complex (6) exponents:

U

2
(n̂el. � n̂h.)

2 =
↵U

2
(n̂el. � n̂h.)

2 �

� (1� ↵)U

2
(n̂el. + n̂h.)

2 + (1� ↵)U(n̂el. + n̂h.). (13)

Parameter ↵ 2 [0, 1] defines the balance between real
and complex exponents in the integral. The first four-
fermionic term can be transformed into bilinear using

Discrete	auxiliary	fields	(BSS-QMC):	

Continuous	auxiliary	fields:	

4

FIG. 1. Average sign in BSS-QMC algorithm, taken from
the ALF (Algorithm for lattice fermions) package [41]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.

sition:

e��Ĥ
⇡ ...e��K̂e��ĤU e��K̂e��ĤU ...+O(�2) (9)

where K̂ is the collection of all bilinear fermionic terms
in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term
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where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.

The details of the construction of the path integral are
straightforward and can be found in [43, 45, 46]. Here
we simply state the explicit form of the partition function
which we have used in our calculations:

Zc=
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where the fermionic operators are given by
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In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle
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where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),

e
� �

2

P
x,y

Ux,yn̂xn̂y
⇠=

Z
D�x e

� 1
2�

P
x,y

�xU
�1
xy �y

e
i
P
x

�xn̂x

, (11)

e
�
2

P
x,y

Ux,yn̂xn̂y
⇠=

Z
D�x e

� 1
2�

P
x,y

�xU
�1
xy �y

e

P
x

�xn̂x

. (12)

The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
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â†
x,#, x 2 sublattice 0

�â†
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ĉx,#, ĉ
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:
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Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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ĉx,#, ĉ
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Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
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function (1) as a sum over all possible values of ⌫x,t:

Zd =
X

⌫x,t

detDel.(⌫x.t) detDh.(⌫x,t), (11)

where Del. and Dh. are fermionic operators for electrons
and holes respectively:

Del.(⌫x,t) = I +
NtY

t=1

⇣
e��(h+µ)diag

�
e2i⇠⌫x,t

�⌘
,

Dh.(⌫x,t) = I +
NtY

t=1

⇣
e��(h�µ)diag

�
e�2i⇠⌫x,t

�⌘
. (12)

Both fermionic operators are Ns⇥Ns matrices where Ns

is the number of lattice sites in space, h is the matrix
of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns

matrix diag
�
e�2i⇠⌫x,t

�
includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
In the case of continuous auxiliary fields, we will write

the HS transformation in more general way employing
both real (7) and complex (6) exponents:

U

2
(n̂el. � n̂h.)

2 =
↵U

2
(n̂el. � n̂h.)

2 �

� (1� ↵)U

2
(n̂el. + n̂h.)

2 + (1� ↵)U(n̂el. + n̂h.). (13)

Parameter ↵ 2 [0, 1] defines the balance between real
and complex exponents in the integral. The first four-
fermionic term can be transformed into bilinear using

3

over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:

e��Un̂"n̂# =
1

2

X

⌫=±1

e2i⇠⌫(n̂"+n̂#�1)� 1
2 �U(n̂"+n̂#�1), (5)

tan2 ⇠ = tanh(
�U

4
).

Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:

e�
�
2

P
x,y Ux,yn̂xn̂y ⇠=

Z
D�xe

� 1
2�

P
x,y �xU

�1
xy �yei

P
x �xn̂x ,(6)

e
�
2

P
x,y Ux,yn̂xn̂y ⇠=

Z
D�xe

� 1
2�

P
x,y �xU

�1
xy �ye

P
x �xn̂x .(7)

It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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Ĥ = �
X

hx,yi

(â†
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Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
both cases. In the case of the discrete transformation (5),
we arrive at the following representation of the partition
function (1) as a sum over all possible values of ⌫x,t:
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Both fermionic operators are Ns⇥Ns matrices where Ns

is the number of lattice sites in space, h is the matrix
of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns

matrix diag
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e�2i⇠⌫x,t
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includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
In the case of continuous auxiliary fields, we will write
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Parameter ↵ 2 [0, 1] defines the balance between real
and complex exponents in the integral. The first four-
fermionic term can be transformed into bilinear using
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Ĥ = �
X

hx,yi

(â†
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ây + b̂†

x
b̂y) +

U

2

X

x

(n̂x,el. � n̂x,h.)
2 +

+µ
X

x

(n̂x,el. � n̂x,h.), (10)

where n̂x,el. = â†
x
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FIG. 1. Average sign in BSS-QMC algorithm, taken from
the ALF (Algorithm for lattice fermions) package [41]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.

sition:

e��Ĥ
⇡ ...e��K̂e��ĤU e��K̂e��ĤU ...+O(�2) (9)

where K̂ is the collection of all bilinear fermionic terms
in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term
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where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.

The details of the construction of the path integral are
straightforward and can be found in [43, 45, 46]. Here
we simply state the explicit form of the partition function
which we have used in our calculations:
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where the fermionic operators are given by
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. (14)

In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle
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�â†
x,#, x 2 sublattice 1

(11)
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âx = âx," (7)

b̂x =

(
â
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ĉy� + h.c.) + U

X

x

n̂x"n̂x# �
✓
U

2
� µ

◆X

x

(n̂x" + n̂x# � 1)

(
ĉx,", ĉ
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FIG. 4. Staggered moment extrapolated to the thermody-
namic limit (see Fig. 3) for two values of the pinning field.
We have equally plotted the single particle gap in units of U .
The inset plots the staggered magnetization as obtained from
a mean-field spin density wave Ansatz.

where we do not detect magnetic ordering but we
do detect a small single particle gap.

• The QMC data in Fig. 4 shows that over a wide pa-
rameter range, the single particle gap measured in
units of the Hubbard U, tracks the staggered mag-
netization. We take this as a strong indication, that
the magnetization provides the only relevant scale
in the problem, determining directly the single par-
ticle gap. We will see below, that this conclusion,
based here on a simple, polynomial extrapolation
of the finite size data, is also obtained, if a more
refined data analysis is performed.

• The data in Fig. 4 exhibits an unusual inflection
point at approximately U/t = 4.1. Such an inflec-
tion point is clearly absent at the mean-field level
(see inset of Fig. 4). We will discuss the impli-
cations of this inflection point in the next section.
Let us finally note, that in previous calculations [1]
we were unable to resolve staggered moments lesser
than m ' 0.03. We thereby missed this inflection
point in the polynomially extrapolated magnetiza-
tion curve and concluded the presence of an inter-
mediate phase [21].

C. Finite size scaling

As mentioned above, one of the particularities of the
data presented in Fig. 4 is the occurrence of an inflec-
tion point at U/t = 4.1. It is a natural question to ask
if this rather peculiar feature may be an artifact of using
a simple polynomial fitting procedure, which one would
indeed expect to fail close to criticality. This could result
in an overestimation of the magnetization in the vicinity

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 3.4  3.6  3.8  4  4.2  4.4  4.6  4.8  5

m
 L

β
 /

 ν

U/t

(a)
L=6
L=9

L=12
L=15
L=18

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-2  0  2  4  6  8  10

m
 L

β
 /

 ν

L
1 / ν

 (U - Uc)/Uc 

(b)
L=6
L=9

L=12
L=15
L=18

FIG. 5. Data collapse for the magnetization presented in Fig.
3. The exponents are taken for the ✏-expansion of Ref. 6. (a)
The crossing point pins down the value of Uc. (b) The data
collapse, using Uc/t = 3.78.

of the critical point between the semi-metallic and the
insulating phase of the Hubbard model. As we explain
next, arguments in favor of this conjecture are provided
by the large-N treatment of the Gross-Neveu model [5],
and the ✏-expansion around three spatial dimensions in
the equivalent Gross-Neveu-Yukawa field theory, formu-
lated in Ref. 6. Given the order parameter exponent, �,
as well as the correlation length exponent, ⌫, the stag-
gered magnetization scales as

m ' |U � Uc|
�
' ⇠��/⌫ . (9)

Using the standard scaling laws [22], the exponent �/⌫
may conveniently be expressed in terms of the anomalous
dimension for the order parameter ⌘, as

�

⌫
⌘

1

2
([d+ z]� 2 + ⌘) , (10)

where d+ z is the e↵ective dimensionality of the system.
If we assume that the Lorentz invariance is emergent at
the critical point, as it indeed is close to the upper criti-
cal dimension dup = 3 of the Gross-Neveu-Yukawa theory
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- creation operator for the electron at the site x with spin s=±1, 

Dispersion relation contains «Dirac cones» in the vicinity of K and K' points in Brillouine zone. Due to this fact the low-
energy excitations can be described by two flavours of 4-component massless Dirac fermions:

Chiral (sublattice) symmetry breaking in graphene

There are several possible channels of the «chiral symmetry» breaking in graphene. These 
channels correspond to appearance of different condensates. The following condensate are in 
the focus of research at the moment:

- antiferromagnetic condensate

- excitonic condensate

From microscopic point of view, antiferromagnetic condensate corresponds to opposite spins of electrons at different sublattices. 
Excitonic condensate corresponds to opposite charge excess at different sublattices. 

V
F
 ~ 1/300 c. So the effective coupling constant is 

α = 300/137 ~ 2. We have a theory with very 

strong instantaneous Coulomb interaction 

Hybrid Monte-Carlo simulations of graphene

We introduce «electrons» and «holes»:

After it the Hamiltonian takes the form:

where is electric charge at site x.

Interaction takes the form:

After the standart Suzuki-Trotter decomposition we arrive at the following representation of the euclidean 
partition function:

We need to introduce artificial mass gap in fermionic operator in order to make it invertible. Usually this mass term should 
correspond to the condensate which behaviour we want to study.  Crucial point in the calculations is that fermionic 
operators for electrons Mel.  and holes  Mh.    are comlex conjugated to each other  only in the case of 
antiferromagnetic mass term. 

Therefore, if we want to study excitonic condensate, the sign problem appears due to the corresponding mass term in fermionic operator.

Possible ways to solve the problem

We may use rational Hybrid Monte-Carlo.  In this case, we artificially increase number of 
fermionic flavoours up to 4 (two «electrons» and two «holes»):

Ф is a phase of the det (Mel. Mh.) . It can be transferred to observable quantity.

We may simulate the theory without any artificial 
mass term. Mass gap can be introduced 
«geometrically» by special boundary conditions or 
special lattice sizes. This method is based on two 
facts:
1) Dirac points in graphene are not at zero 
momentum but at two special points (K and K') in 
the Brillouine zone.
2) Any finite size lattice allows only the discrete set 
of particle's momentum. The allowed values of 
momentum can or can not cover the K-points 
depending on the geometry of the lattice.

This gap is controlled by the size of the lattice. The larger is 
the lattice, the smaller is the gap.

The problem is that «geometrical» mass gap doesn't 
inroduce the primer for the symmetry breaking. So we still are 
unable to detect the formation of any condensates. 

The figure demonstrates the arrangement of possible momentum values inside the Brillouine 
zone. If the lattice sizes are not equal to 6x, the K-points are not covered by latice momentum 
values therefore, we have a «geometrical» mass gap.

But we can use fluctuations of order parameter:

to detect the phase transition.

At the transition point, the spatial correlation radius of the order parameter should tend to infinity. 
Also It is possible to search for the existence of the Goldstone bosons.
Therefore, one should measure the time:                                                    or spatial:

correlators to detect the phase transition

Graphene electronic properties: 

We start from the tight-binding Hamiltonian for the electrons at p
z
 orbitals:

This figure demonstates the distribution of 
the phase Ф for several values of mass. 
Mass term corresponds to the excitonic 
phase transition.

This concept is especially appropriate for this situation, because we are always interested in 
the limit of the zero artificial mass. So the mass term in fermionic operator is realtively small 
and phase of the fermionic operator doesn't fluctuate too huge., 

Here the dependence of the distbution 
width on the mass is shown. The 
distribution width rapidly grows with  the 
mass increases. We should work with 
as small masses as possible.  

Free	fermions	with	only	nearest-neighbor	hoppings:	
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Free	fermions	with	only	nearest-neighbor	hoppings:	

 Freedom of choice for the auxiliary field (type of the Hubbard-Stratonovich decomposition):

 Bosonic part of the action: Gaussian
 Fermionic operator
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A/B,↓

̂q = ̂nel. − ̂nh.ϕ χ ̂s3 = ̂nel. + ̂nh. is coupled to  is coupled to 
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ĉx,#, ĉ
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â
†
x,s
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â
†
x,#, x 2 sublattice 0

�â
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†
x,# ! ±b̂

†
x,±b̂x

(13)

1

3

over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:
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tan2 ⇠ = tanh(
�U

4
).

Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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ĉx,#, ĉ
†
x,# ! ±b̂†x,±b̂x

, (9)

where the sign in the second line alternates depending on
the sublattice. The Hamiltonian (8) acquires the follow-
ing form after the transition to the new variables :
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number operators for electrons and holes respectively.
Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
both cases. In the case of the discrete transformation (5),
we arrive at the following representation of the partition
function (1) as a sum over all possible values of ⌫x,t:
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Ĥ = �
X

hx,yi,�

ĉ†
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(
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ây + b̂†

x
b̂y) +

U

2

X

x

(n̂x,el. � n̂x,h.)
2 +

+µ
X

x

(n̂x,el. � n̂x,h.), (10)

where n̂x,el. = â†
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Both fermionic operators are Ns⇥Ns matrices where Ns

is the number of lattice sites in space, h is the matrix
of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns

matrix diag
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e�2i⇠⌫x,t
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includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
In the case of continuous auxiliary fields, we will write

the HS transformation in more general way employing
both real (7) and complex (6) exponents:
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Parameter ↵ 2 [0, 1] defines the balance between real
and complex exponents in the integral. The first four-
fermionic term can be transformed into bilinear using
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:
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Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
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ây + b̂†

x
b̂y) +

U

2

X

x

(n̂x,el. � n̂x,h.)
2 +

+µ
X

x

(n̂x,el. � n̂x,h.), (10)

where n̂x,el. = â†
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FIG. 1. Average sign in BSS-QMC algorithm, taken from
the ALF (Algorithm for lattice fermions) package [41]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.

sition:

e��Ĥ
⇡ ...e��K̂e��ĤU e��K̂e��ĤU ...+O(�2) (9)

where K̂ is the collection of all bilinear fermionic terms
in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term
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ŝ2
x
+ (1� ↵)Uŝx, (10)

where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.

The details of the construction of the path integral are
straightforward and can be found in [43, 45, 46]. Here
we simply state the explicit form of the partition function
which we have used in our calculations:
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where the fermionic operators are given by

Mel.,h. = I +
N⌧Y
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In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle
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â
†
x,s
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Ĥ = Ĥtb + Ĥint (9)

Z = Tr e��Ĥ ⇡ Tr
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��Ĥ(2)e
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
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Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:

Ĥ = �
X

hx,yi,�

ĉ†
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
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†
x," ! âx, â†x,
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ĉy� + U

X

x

n̂x"n̂x# �

�
✓
U

2
� µ

◆X

x

(n̂x" + n̂x# � 1). (8)

The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
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ĉ†
x�
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lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:

Ĥ = �
X

hx,yi,�

ĉ†
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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ĉx,", ĉ
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x," ! âx, â†x,

ĉx,#, ĉ
†
x,# ! ±b̂†x,±b̂x

, (9)

where the sign in the second line alternates depending on
the sublattice. The Hamiltonian (8) acquires the follow-
ing form after the transition to the new variables :
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where n̂x,el. = â†
x
âx and n̂x,h. = b̂†

x
b̂x are the particle

number operators for electrons and holes respectively.
Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
both cases. In the case of the discrete transformation (5),
we arrive at the following representation of the partition
function (1) as a sum over all possible values of ⌫x,t:

Zd =
X

⌫x,t

detDel.(⌫x.t) detDh.(⌫x,t), (11)

where Del. and Dh. are fermionic operators for electrons
and holes respectively:
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. (12)

Both fermionic operators are Ns⇥Ns matrices where Ns

is the number of lattice sites in space, h is the matrix
of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns

matrix diag
�
e�2i⇠⌫x,t

�
includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
In the case of continuous auxiliary fields, we will write

the HS transformation in more general way employing
both real (7) and complex (6) exponents:
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2 �

� (1� ↵)U

2
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2 + (1� ↵)U(n̂el. + n̂h.). (13)

Parameter ↵ 2 [0, 1] defines the balance between real
and complex exponents in the integral. The first four-
fermionic term can be transformed into bilinear using

Discrete	auxiliary	fields	(BSS-QMC):	

Continuous	auxiliary	fields:	
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FIG. 1. Average sign in BSS-QMC algorithm, taken from
the ALF (Algorithm for lattice fermions) package [41]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.

sition:

e��Ĥ
⇡ ...e��K̂e��ĤU e��K̂e��ĤU ...+O(�2) (9)

where K̂ is the collection of all bilinear fermionic terms
in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term
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ŝ2
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+ (1� ↵)Uŝx, (10)

where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.

The details of the construction of the path integral are
straightforward and can be found in [43, 45, 46]. Here
we simply state the explicit form of the partition function
which we have used in our calculations:

Zc=

Z
D�x,⌧ D�x,⌧ e

�S↵ detMel. detMh., (13)
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where the fermionic operators are given by

Mel.,h. = I +
N⌧Y

⌧=1

h
e��(h±µ)diag

�
e±i�x,⌧+�x,⌧

�i
. (14)

In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle
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 Trotter decomposition:

Path integrals for the Hubbard model
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Ĥ = Ĥtb + Ĥint (9)

Z = Tr e��Ĥ ⇡ Tr
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FIG. 4. Staggered moment extrapolated to the thermody-
namic limit (see Fig. 3) for two values of the pinning field.
We have equally plotted the single particle gap in units of U .
The inset plots the staggered magnetization as obtained from
a mean-field spin density wave Ansatz.

where we do not detect magnetic ordering but we
do detect a small single particle gap.

• The QMC data in Fig. 4 shows that over a wide pa-
rameter range, the single particle gap measured in
units of the Hubbard U, tracks the staggered mag-
netization. We take this as a strong indication, that
the magnetization provides the only relevant scale
in the problem, determining directly the single par-
ticle gap. We will see below, that this conclusion,
based here on a simple, polynomial extrapolation
of the finite size data, is also obtained, if a more
refined data analysis is performed.

• The data in Fig. 4 exhibits an unusual inflection
point at approximately U/t = 4.1. Such an inflec-
tion point is clearly absent at the mean-field level
(see inset of Fig. 4). We will discuss the impli-
cations of this inflection point in the next section.
Let us finally note, that in previous calculations [1]
we were unable to resolve staggered moments lesser
than m ' 0.03. We thereby missed this inflection
point in the polynomially extrapolated magnetiza-
tion curve and concluded the presence of an inter-
mediate phase [21].

C. Finite size scaling

As mentioned above, one of the particularities of the
data presented in Fig. 4 is the occurrence of an inflec-
tion point at U/t = 4.1. It is a natural question to ask
if this rather peculiar feature may be an artifact of using
a simple polynomial fitting procedure, which one would
indeed expect to fail close to criticality. This could result
in an overestimation of the magnetization in the vicinity
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FIG. 5. Data collapse for the magnetization presented in Fig.
3. The exponents are taken for the ✏-expansion of Ref. 6. (a)
The crossing point pins down the value of Uc. (b) The data
collapse, using Uc/t = 3.78.

of the critical point between the semi-metallic and the
insulating phase of the Hubbard model. As we explain
next, arguments in favor of this conjecture are provided
by the large-N treatment of the Gross-Neveu model [5],
and the ✏-expansion around three spatial dimensions in
the equivalent Gross-Neveu-Yukawa field theory, formu-
lated in Ref. 6. Given the order parameter exponent, �,
as well as the correlation length exponent, ⌫, the stag-
gered magnetization scales as

m ' |U � Uc|
�
' ⇠��/⌫ . (9)

Using the standard scaling laws [22], the exponent �/⌫
may conveniently be expressed in terms of the anomalous
dimension for the order parameter ⌘, as

�

⌫
⌘

1

2
([d+ z]� 2 + ⌘) , (10)

where d+ z is the e↵ective dimensionality of the system.
If we assume that the Lorentz invariance is emergent at
the critical point, as it indeed is close to the upper criti-
cal dimension dup = 3 of the Gross-Neveu-Yukawa theory
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Abstract

Graphene is a well-known two-dimensional material which has a set of unique properties. Due to massless electronic excitations 
and very strong Coulomb inter-electron interaction, various phase transitions with spontaneous generation of mass gap can occur 
in graphene. The situation resembles the chiral symmetry breaking in QCD. Recently the Hybrid Monte-Carlo method was applied 
for a studying of graphene electronic properties. Several types of mass term are possible due to several kinds of phase 
transitions. Sign problem appears in fermionic determinant in case of mass term which corresponds to the excitonic phase 
transition. A brief discussion concerning ways to solve this problem is presented.

- creation operator for the electron at the site x with spin s=±1, 

Dispersion relation contains «Dirac cones» in the vicinity of K and K' points in Brillouine zone. Due to this fact the low-
energy excitations can be described by two flavours of 4-component massless Dirac fermions:

Chiral (sublattice) symmetry breaking in graphene

There are several possible channels of the «chiral symmetry» breaking in graphene. These 
channels correspond to appearance of different condensates. The following condensate are in 
the focus of research at the moment:

- antiferromagnetic condensate

- excitonic condensate

From microscopic point of view, antiferromagnetic condensate corresponds to opposite spins of electrons at different sublattices. 
Excitonic condensate corresponds to opposite charge excess at different sublattices. 

V
F
 ~ 1/300 c. So the effective coupling constant is 

α = 300/137 ~ 2. We have a theory with very 

strong instantaneous Coulomb interaction 

Hybrid Monte-Carlo simulations of graphene

We introduce «electrons» and «holes»:

After it the Hamiltonian takes the form:

where is electric charge at site x.

Interaction takes the form:

After the standart Suzuki-Trotter decomposition we arrive at the following representation of the euclidean 
partition function:

We need to introduce artificial mass gap in fermionic operator in order to make it invertible. Usually this mass term should 
correspond to the condensate which behaviour we want to study.  Crucial point in the calculations is that fermionic 
operators for electrons Mel.  and holes  Mh.    are comlex conjugated to each other  only in the case of 
antiferromagnetic mass term. 

Therefore, if we want to study excitonic condensate, the sign problem appears due to the corresponding mass term in fermionic operator.

Possible ways to solve the problem

We may use rational Hybrid Monte-Carlo.  In this case, we artificially increase number of 
fermionic flavoours up to 4 (two «electrons» and two «holes»):

Ф is a phase of the det (Mel. Mh.) . It can be transferred to observable quantity.

We may simulate the theory without any artificial 
mass term. Mass gap can be introduced 
«geometrically» by special boundary conditions or 
special lattice sizes. This method is based on two 
facts:
1) Dirac points in graphene are not at zero 
momentum but at two special points (K and K') in 
the Brillouine zone.
2) Any finite size lattice allows only the discrete set 
of particle's momentum. The allowed values of 
momentum can or can not cover the K-points 
depending on the geometry of the lattice.

This gap is controlled by the size of the lattice. The larger is 
the lattice, the smaller is the gap.

The problem is that «geometrical» mass gap doesn't 
inroduce the primer for the symmetry breaking. So we still are 
unable to detect the formation of any condensates. 

The figure demonstrates the arrangement of possible momentum values inside the Brillouine 
zone. If the lattice sizes are not equal to 6x, the K-points are not covered by latice momentum 
values therefore, we have a «geometrical» mass gap.

But we can use fluctuations of order parameter:

to detect the phase transition.

At the transition point, the spatial correlation radius of the order parameter should tend to infinity. 
Also It is possible to search for the existence of the Goldstone bosons.
Therefore, one should measure the time:                                                    or spatial:

correlators to detect the phase transition

Graphene electronic properties: 

We start from the tight-binding Hamiltonian for the electrons at p
z
 orbitals:

This figure demonstates the distribution of 
the phase Ф for several values of mass. 
Mass term corresponds to the excitonic 
phase transition.

This concept is especially appropriate for this situation, because we are always interested in 
the limit of the zero artificial mass. So the mass term in fermionic operator is realtively small 
and phase of the fermionic operator doesn't fluctuate too huge., 

Here the dependence of the distbution 
width on the mass is shown. The 
distribution width rapidly grows with  the 
mass increases. We should work with 
as small masses as possible.  

Free	fermions	with	only	nearest-neighbor	hoppings:	

Hubbard	model	on	hexagonal	lattice(1)	
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 orbitals:
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ĉx,", ĉ
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FIG. 4. Staggered moment extrapolated to the thermody-
namic limit (see Fig. 3) for two values of the pinning field.
We have equally plotted the single particle gap in units of U .
The inset plots the staggered magnetization as obtained from
a mean-field spin density wave Ansatz.

where we do not detect magnetic ordering but we
do detect a small single particle gap.

• The QMC data in Fig. 4 shows that over a wide pa-
rameter range, the single particle gap measured in
units of the Hubbard U, tracks the staggered mag-
netization. We take this as a strong indication, that
the magnetization provides the only relevant scale
in the problem, determining directly the single par-
ticle gap. We will see below, that this conclusion,
based here on a simple, polynomial extrapolation
of the finite size data, is also obtained, if a more
refined data analysis is performed.

• The data in Fig. 4 exhibits an unusual inflection
point at approximately U/t = 4.1. Such an inflec-
tion point is clearly absent at the mean-field level
(see inset of Fig. 4). We will discuss the impli-
cations of this inflection point in the next section.
Let us finally note, that in previous calculations [1]
we were unable to resolve staggered moments lesser
than m ' 0.03. We thereby missed this inflection
point in the polynomially extrapolated magnetiza-
tion curve and concluded the presence of an inter-
mediate phase [21].

C. Finite size scaling

As mentioned above, one of the particularities of the
data presented in Fig. 4 is the occurrence of an inflec-
tion point at U/t = 4.1. It is a natural question to ask
if this rather peculiar feature may be an artifact of using
a simple polynomial fitting procedure, which one would
indeed expect to fail close to criticality. This could result
in an overestimation of the magnetization in the vicinity
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FIG. 5. Data collapse for the magnetization presented in Fig.
3. The exponents are taken for the ✏-expansion of Ref. 6. (a)
The crossing point pins down the value of Uc. (b) The data
collapse, using Uc/t = 3.78.

of the critical point between the semi-metallic and the
insulating phase of the Hubbard model. As we explain
next, arguments in favor of this conjecture are provided
by the large-N treatment of the Gross-Neveu model [5],
and the ✏-expansion around three spatial dimensions in
the equivalent Gross-Neveu-Yukawa field theory, formu-
lated in Ref. 6. Given the order parameter exponent, �,
as well as the correlation length exponent, ⌫, the stag-
gered magnetization scales as

m ' |U � Uc|
�
' ⇠��/⌫ . (9)

Using the standard scaling laws [22], the exponent �/⌫
may conveniently be expressed in terms of the anomalous
dimension for the order parameter ⌘, as

�

⌫
⌘

1

2
([d+ z]� 2 + ⌘) , (10)

where d+ z is the e↵ective dimensionality of the system.
If we assume that the Lorentz invariance is emergent at
the critical point, as it indeed is close to the upper criti-
cal dimension dup = 3 of the Gross-Neveu-Yukawa theory
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- creation operator for the electron at the site x with spin s=±1, 

Dispersion relation contains «Dirac cones» in the vicinity of K and K' points in Brillouine zone. Due to this fact the low-
energy excitations can be described by two flavours of 4-component massless Dirac fermions:

Chiral (sublattice) symmetry breaking in graphene

There are several possible channels of the «chiral symmetry» breaking in graphene. These 
channels correspond to appearance of different condensates. The following condensate are in 
the focus of research at the moment:

- antiferromagnetic condensate

- excitonic condensate

From microscopic point of view, antiferromagnetic condensate corresponds to opposite spins of electrons at different sublattices. 
Excitonic condensate corresponds to opposite charge excess at different sublattices. 

V
F
 ~ 1/300 c. So the effective coupling constant is 

α = 300/137 ~ 2. We have a theory with very 

strong instantaneous Coulomb interaction 

Hybrid Monte-Carlo simulations of graphene

We introduce «electrons» and «holes»:

After it the Hamiltonian takes the form:

where is electric charge at site x.

Interaction takes the form:

After the standart Suzuki-Trotter decomposition we arrive at the following representation of the euclidean 
partition function:

We need to introduce artificial mass gap in fermionic operator in order to make it invertible. Usually this mass term should 
correspond to the condensate which behaviour we want to study.  Crucial point in the calculations is that fermionic 
operators for electrons Mel.  and holes  Mh.    are comlex conjugated to each other  only in the case of 
antiferromagnetic mass term. 

Therefore, if we want to study excitonic condensate, the sign problem appears due to the corresponding mass term in fermionic operator.

Possible ways to solve the problem

We may use rational Hybrid Monte-Carlo.  In this case, we artificially increase number of 
fermionic flavoours up to 4 (two «electrons» and two «holes»):

Ф is a phase of the det (Mel. Mh.) . It can be transferred to observable quantity.

We may simulate the theory without any artificial 
mass term. Mass gap can be introduced 
«geometrically» by special boundary conditions or 
special lattice sizes. This method is based on two 
facts:
1) Dirac points in graphene are not at zero 
momentum but at two special points (K and K') in 
the Brillouine zone.
2) Any finite size lattice allows only the discrete set 
of particle's momentum. The allowed values of 
momentum can or can not cover the K-points 
depending on the geometry of the lattice.

This gap is controlled by the size of the lattice. The larger is 
the lattice, the smaller is the gap.

The problem is that «geometrical» mass gap doesn't 
inroduce the primer for the symmetry breaking. So we still are 
unable to detect the formation of any condensates. 

The figure demonstrates the arrangement of possible momentum values inside the Brillouine 
zone. If the lattice sizes are not equal to 6x, the K-points are not covered by latice momentum 
values therefore, we have a «geometrical» mass gap.

But we can use fluctuations of order parameter:

to detect the phase transition.

At the transition point, the spatial correlation radius of the order parameter should tend to infinity. 
Also It is possible to search for the existence of the Goldstone bosons.
Therefore, one should measure the time:                                                    or spatial:

correlators to detect the phase transition

Graphene electronic properties: 

We start from the tight-binding Hamiltonian for the electrons at p
z
 orbitals:

This figure demonstates the distribution of 
the phase Ф for several values of mass. 
Mass term corresponds to the excitonic 
phase transition.

This concept is especially appropriate for this situation, because we are always interested in 
the limit of the zero artificial mass. So the mass term in fermionic operator is realtively small 
and phase of the fermionic operator doesn't fluctuate too huge., 

Here the dependence of the distbution 
width on the mass is shown. The 
distribution width rapidly grows with  the 
mass increases. We should work with 
as small masses as possible.  

Free	fermions	with	only	nearest-neighbor	hoppings:	

Hubbard	model	on	hexagonal	lattice(1)	
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FIG. 4. Staggered moment extrapolated to the thermody-
namic limit (see Fig. 3) for two values of the pinning field.
We have equally plotted the single particle gap in units of U .
The inset plots the staggered magnetization as obtained from
a mean-field spin density wave Ansatz.

where we do not detect magnetic ordering but we
do detect a small single particle gap.

• The QMC data in Fig. 4 shows that over a wide pa-
rameter range, the single particle gap measured in
units of the Hubbard U, tracks the staggered mag-
netization. We take this as a strong indication, that
the magnetization provides the only relevant scale
in the problem, determining directly the single par-
ticle gap. We will see below, that this conclusion,
based here on a simple, polynomial extrapolation
of the finite size data, is also obtained, if a more
refined data analysis is performed.

• The data in Fig. 4 exhibits an unusual inflection
point at approximately U/t = 4.1. Such an inflec-
tion point is clearly absent at the mean-field level
(see inset of Fig. 4). We will discuss the impli-
cations of this inflection point in the next section.
Let us finally note, that in previous calculations [1]
we were unable to resolve staggered moments lesser
than m ' 0.03. We thereby missed this inflection
point in the polynomially extrapolated magnetiza-
tion curve and concluded the presence of an inter-
mediate phase [21].

C. Finite size scaling

As mentioned above, one of the particularities of the
data presented in Fig. 4 is the occurrence of an inflec-
tion point at U/t = 4.1. It is a natural question to ask
if this rather peculiar feature may be an artifact of using
a simple polynomial fitting procedure, which one would
indeed expect to fail close to criticality. This could result
in an overestimation of the magnetization in the vicinity
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FIG. 5. Data collapse for the magnetization presented in Fig.
3. The exponents are taken for the ✏-expansion of Ref. 6. (a)
The crossing point pins down the value of Uc. (b) The data
collapse, using Uc/t = 3.78.

of the critical point between the semi-metallic and the
insulating phase of the Hubbard model. As we explain
next, arguments in favor of this conjecture are provided
by the large-N treatment of the Gross-Neveu model [5],
and the ✏-expansion around three spatial dimensions in
the equivalent Gross-Neveu-Yukawa field theory, formu-
lated in Ref. 6. Given the order parameter exponent, �,
as well as the correlation length exponent, ⌫, the stag-
gered magnetization scales as

m ' |U � Uc|
�
' ⇠��/⌫ . (9)

Using the standard scaling laws [22], the exponent �/⌫
may conveniently be expressed in terms of the anomalous
dimension for the order parameter ⌘, as

�

⌫
⌘

1

2
([d+ z]� 2 + ⌘) , (10)

where d+ z is the e↵ective dimensionality of the system.
If we assume that the Lorentz invariance is emergent at
the critical point, as it indeed is close to the upper criti-
cal dimension dup = 3 of the Gross-Neveu-Yukawa theory
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Graphene is a well-known two-dimensional material which has a set of unique properties. Due to massless electronic excitations 
and very strong Coulomb inter-electron interaction, various phase transitions with spontaneous generation of mass gap can occur 
in graphene. The situation resembles the chiral symmetry breaking in QCD. Recently the Hybrid Monte-Carlo method was applied 
for a studying of graphene electronic properties. Several types of mass term are possible due to several kinds of phase 
transitions. Sign problem appears in fermionic determinant in case of mass term which corresponds to the excitonic phase 
transition. A brief discussion concerning ways to solve this problem is presented.

- creation operator for the electron at the site x with spin s=±1, 

Dispersion relation contains «Dirac cones» in the vicinity of K and K' points in Brillouine zone. Due to this fact the low-
energy excitations can be described by two flavours of 4-component massless Dirac fermions:

Chiral (sublattice) symmetry breaking in graphene

There are several possible channels of the «chiral symmetry» breaking in graphene. These 
channels correspond to appearance of different condensates. The following condensate are in 
the focus of research at the moment:

- antiferromagnetic condensate

- excitonic condensate

From microscopic point of view, antiferromagnetic condensate corresponds to opposite spins of electrons at different sublattices. 
Excitonic condensate corresponds to opposite charge excess at different sublattices. 

V
F
 ~ 1/300 c. So the effective coupling constant is 

α = 300/137 ~ 2. We have a theory with very 

strong instantaneous Coulomb interaction 

Hybrid Monte-Carlo simulations of graphene

We introduce «electrons» and «holes»:

After it the Hamiltonian takes the form:

where is electric charge at site x.

Interaction takes the form:

After the standart Suzuki-Trotter decomposition we arrive at the following representation of the euclidean 
partition function:

We need to introduce artificial mass gap in fermionic operator in order to make it invertible. Usually this mass term should 
correspond to the condensate which behaviour we want to study.  Crucial point in the calculations is that fermionic 
operators for electrons Mel.  and holes  Mh.    are comlex conjugated to each other  only in the case of 
antiferromagnetic mass term. 

Therefore, if we want to study excitonic condensate, the sign problem appears due to the corresponding mass term in fermionic operator.

Possible ways to solve the problem

We may use rational Hybrid Monte-Carlo.  In this case, we artificially increase number of 
fermionic flavoours up to 4 (two «electrons» and two «holes»):

Ф is a phase of the det (Mel. Mh.) . It can be transferred to observable quantity.

We may simulate the theory without any artificial 
mass term. Mass gap can be introduced 
«geometrically» by special boundary conditions or 
special lattice sizes. This method is based on two 
facts:
1) Dirac points in graphene are not at zero 
momentum but at two special points (K and K') in 
the Brillouine zone.
2) Any finite size lattice allows only the discrete set 
of particle's momentum. The allowed values of 
momentum can or can not cover the K-points 
depending on the geometry of the lattice.

This gap is controlled by the size of the lattice. The larger is 
the lattice, the smaller is the gap.

The problem is that «geometrical» mass gap doesn't 
inroduce the primer for the symmetry breaking. So we still are 
unable to detect the formation of any condensates. 

The figure demonstrates the arrangement of possible momentum values inside the Brillouine 
zone. If the lattice sizes are not equal to 6x, the K-points are not covered by latice momentum 
values therefore, we have a «geometrical» mass gap.

But we can use fluctuations of order parameter:

to detect the phase transition.

At the transition point, the spatial correlation radius of the order parameter should tend to infinity. 
Also It is possible to search for the existence of the Goldstone bosons.
Therefore, one should measure the time:                                                    or spatial:

correlators to detect the phase transition

Graphene electronic properties: 

We start from the tight-binding Hamiltonian for the electrons at p
z
 orbitals:

This figure demonstates the distribution of 
the phase Ф for several values of mass. 
Mass term corresponds to the excitonic 
phase transition.

This concept is especially appropriate for this situation, because we are always interested in 
the limit of the zero artificial mass. So the mass term in fermionic operator is realtively small 
and phase of the fermionic operator doesn't fluctuate too huge., 

Here the dependence of the distbution 
width on the mass is shown. The 
distribution width rapidly grows with  the 
mass increases. We should work with 
as small masses as possible.  

Free	fermions	with	only	nearest-neighbor	hoppings:	
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FIG. 4. Staggered moment extrapolated to the thermody-
namic limit (see Fig. 3) for two values of the pinning field.
We have equally plotted the single particle gap in units of U .
The inset plots the staggered magnetization as obtained from
a mean-field spin density wave Ansatz.

where we do not detect magnetic ordering but we
do detect a small single particle gap.

• The QMC data in Fig. 4 shows that over a wide pa-
rameter range, the single particle gap measured in
units of the Hubbard U, tracks the staggered mag-
netization. We take this as a strong indication, that
the magnetization provides the only relevant scale
in the problem, determining directly the single par-
ticle gap. We will see below, that this conclusion,
based here on a simple, polynomial extrapolation
of the finite size data, is also obtained, if a more
refined data analysis is performed.

• The data in Fig. 4 exhibits an unusual inflection
point at approximately U/t = 4.1. Such an inflec-
tion point is clearly absent at the mean-field level
(see inset of Fig. 4). We will discuss the impli-
cations of this inflection point in the next section.
Let us finally note, that in previous calculations [1]
we were unable to resolve staggered moments lesser
than m ' 0.03. We thereby missed this inflection
point in the polynomially extrapolated magnetiza-
tion curve and concluded the presence of an inter-
mediate phase [21].

C. Finite size scaling

As mentioned above, one of the particularities of the
data presented in Fig. 4 is the occurrence of an inflec-
tion point at U/t = 4.1. It is a natural question to ask
if this rather peculiar feature may be an artifact of using
a simple polynomial fitting procedure, which one would
indeed expect to fail close to criticality. This could result
in an overestimation of the magnetization in the vicinity
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FIG. 5. Data collapse for the magnetization presented in Fig.
3. The exponents are taken for the ✏-expansion of Ref. 6. (a)
The crossing point pins down the value of Uc. (b) The data
collapse, using Uc/t = 3.78.

of the critical point between the semi-metallic and the
insulating phase of the Hubbard model. As we explain
next, arguments in favor of this conjecture are provided
by the large-N treatment of the Gross-Neveu model [5],
and the ✏-expansion around three spatial dimensions in
the equivalent Gross-Neveu-Yukawa field theory, formu-
lated in Ref. 6. Given the order parameter exponent, �,
as well as the correlation length exponent, ⌫, the stag-
gered magnetization scales as

m ' |U � Uc|
�
' ⇠��/⌫ . (9)

Using the standard scaling laws [22], the exponent �/⌫
may conveniently be expressed in terms of the anomalous
dimension for the order parameter ⌘, as

�

⌫
⌘

1

2
([d+ z]� 2 + ⌘) , (10)

where d+ z is the e↵ective dimensionality of the system.
If we assume that the Lorentz invariance is emergent at
the critical point, as it indeed is close to the upper criti-
cal dimension dup = 3 of the Gross-Neveu-Yukawa theory
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where is electric charge at site x.

Interaction takes the form:

After the standart Suzuki-Trotter decomposition we arrive at the following representation of the euclidean 
partition function:

We need to introduce artificial mass gap in fermionic operator in order to make it invertible. Usually this mass term should 
correspond to the condensate which behaviour we want to study.  Crucial point in the calculations is that fermionic 
operators for electrons Mel.  and holes  Mh.    are comlex conjugated to each other  only in the case of 
antiferromagnetic mass term. 

Therefore, if we want to study excitonic condensate, the sign problem appears due to the corresponding mass term in fermionic operator.

Possible ways to solve the problem

We may use rational Hybrid Monte-Carlo.  In this case, we artificially increase number of 
fermionic flavoours up to 4 (two «electrons» and two «holes»):

Ф is a phase of the det (Mel. Mh.) . It can be transferred to observable quantity.

We may simulate the theory without any artificial 
mass term. Mass gap can be introduced 
«geometrically» by special boundary conditions or 
special lattice sizes. This method is based on two 
facts:
1) Dirac points in graphene are not at zero 
momentum but at two special points (K and K') in 
the Brillouine zone.
2) Any finite size lattice allows only the discrete set 
of particle's momentum. The allowed values of 
momentum can or can not cover the K-points 
depending on the geometry of the lattice.

This gap is controlled by the size of the lattice. The larger is 
the lattice, the smaller is the gap.

The problem is that «geometrical» mass gap doesn't 
inroduce the primer for the symmetry breaking. So we still are 
unable to detect the formation of any condensates. 

The figure demonstrates the arrangement of possible momentum values inside the Brillouine 
zone. If the lattice sizes are not equal to 6x, the K-points are not covered by latice momentum 
values therefore, we have a «geometrical» mass gap.

But we can use fluctuations of order parameter:

to detect the phase transition.

At the transition point, the spatial correlation radius of the order parameter should tend to infinity. 
Also It is possible to search for the existence of the Goldstone bosons.
Therefore, one should measure the time:                                                    or spatial:

correlators to detect the phase transition

Graphene electronic properties: 

We start from the tight-binding Hamiltonian for the electrons at p
z
 orbitals:

This figure demonstates the distribution of 
the phase Ф for several values of mass. 
Mass term corresponds to the excitonic 
phase transition.

This concept is especially appropriate for this situation, because we are always interested in 
the limit of the zero artificial mass. So the mass term in fermionic operator is realtively small 
and phase of the fermionic operator doesn't fluctuate too huge., 

Here the dependence of the distbution 
width on the mass is shown. The 
distribution width rapidly grows with  the 
mass increases. We should work with 
as small masses as possible.  
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Ĥint =
U

2

X

x

(n̂e � n̂h)
2 (2)

â
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FIG. 4. Staggered moment extrapolated to the thermody-
namic limit (see Fig. 3) for two values of the pinning field.
We have equally plotted the single particle gap in units of U .
The inset plots the staggered magnetization as obtained from
a mean-field spin density wave Ansatz.

where we do not detect magnetic ordering but we
do detect a small single particle gap.

• The QMC data in Fig. 4 shows that over a wide pa-
rameter range, the single particle gap measured in
units of the Hubbard U, tracks the staggered mag-
netization. We take this as a strong indication, that
the magnetization provides the only relevant scale
in the problem, determining directly the single par-
ticle gap. We will see below, that this conclusion,
based here on a simple, polynomial extrapolation
of the finite size data, is also obtained, if a more
refined data analysis is performed.

• The data in Fig. 4 exhibits an unusual inflection
point at approximately U/t = 4.1. Such an inflec-
tion point is clearly absent at the mean-field level
(see inset of Fig. 4). We will discuss the impli-
cations of this inflection point in the next section.
Let us finally note, that in previous calculations [1]
we were unable to resolve staggered moments lesser
than m ' 0.03. We thereby missed this inflection
point in the polynomially extrapolated magnetiza-
tion curve and concluded the presence of an inter-
mediate phase [21].

C. Finite size scaling

As mentioned above, one of the particularities of the
data presented in Fig. 4 is the occurrence of an inflec-
tion point at U/t = 4.1. It is a natural question to ask
if this rather peculiar feature may be an artifact of using
a simple polynomial fitting procedure, which one would
indeed expect to fail close to criticality. This could result
in an overestimation of the magnetization in the vicinity

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 3.4  3.6  3.8  4  4.2  4.4  4.6  4.8  5

m
 L

β
 /

 ν

U/t

(a)
L=6
L=9

L=12
L=15
L=18

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-2  0  2  4  6  8  10

m
 L

β
 /

 ν

L
1 / ν

 (U - Uc)/Uc 

(b)
L=6
L=9

L=12
L=15
L=18

FIG. 5. Data collapse for the magnetization presented in Fig.
3. The exponents are taken for the ✏-expansion of Ref. 6. (a)
The crossing point pins down the value of Uc. (b) The data
collapse, using Uc/t = 3.78.

of the critical point between the semi-metallic and the
insulating phase of the Hubbard model. As we explain
next, arguments in favor of this conjecture are provided
by the large-N treatment of the Gross-Neveu model [5],
and the ✏-expansion around three spatial dimensions in
the equivalent Gross-Neveu-Yukawa field theory, formu-
lated in Ref. 6. Given the order parameter exponent, �,
as well as the correlation length exponent, ⌫, the stag-
gered magnetization scales as

m ' |U � Uc|
�
' ⇠��/⌫ . (9)

Using the standard scaling laws [22], the exponent �/⌫
may conveniently be expressed in terms of the anomalous
dimension for the order parameter ⌘, as

�

⌫
⌘

1

2
([d+ z]� 2 + ⌘) , (10)

where d+ z is the e↵ective dimensionality of the system.
If we assume that the Lorentz invariance is emergent at
the critical point, as it indeed is close to the upper criti-
cal dimension dup = 3 of the Gross-Neveu-Yukawa theory
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- creation operator for the electron at the site x with spin s=±1, 

Dispersion relation contains «Dirac cones» in the vicinity of K and K' points in Brillouine zone. Due to this fact the low-
energy excitations can be described by two flavours of 4-component massless Dirac fermions:

Chiral (sublattice) symmetry breaking in graphene

There are several possible channels of the «chiral symmetry» breaking in graphene. These 
channels correspond to appearance of different condensates. The following condensate are in 
the focus of research at the moment:

- antiferromagnetic condensate

- excitonic condensate

From microscopic point of view, antiferromagnetic condensate corresponds to opposite spins of electrons at different sublattices. 
Excitonic condensate corresponds to opposite charge excess at different sublattices. 

V
F
 ~ 1/300 c. So the effective coupling constant is 

α = 300/137 ~ 2. We have a theory with very 

strong instantaneous Coulomb interaction 

Hybrid Monte-Carlo simulations of graphene

We introduce «electrons» and «holes»:

After it the Hamiltonian takes the form:

where is electric charge at site x.

Interaction takes the form:

After the standart Suzuki-Trotter decomposition we arrive at the following representation of the euclidean 
partition function:

We need to introduce artificial mass gap in fermionic operator in order to make it invertible. Usually this mass term should 
correspond to the condensate which behaviour we want to study.  Crucial point in the calculations is that fermionic 
operators for electrons Mel.  and holes  Mh.    are comlex conjugated to each other  only in the case of 
antiferromagnetic mass term. 

Therefore, if we want to study excitonic condensate, the sign problem appears due to the corresponding mass term in fermionic operator.

Possible ways to solve the problem

We may use rational Hybrid Monte-Carlo.  In this case, we artificially increase number of 
fermionic flavoours up to 4 (two «electrons» and two «holes»):

Ф is a phase of the det (Mel. Mh.) . It can be transferred to observable quantity.

We may simulate the theory without any artificial 
mass term. Mass gap can be introduced 
«geometrically» by special boundary conditions or 
special lattice sizes. This method is based on two 
facts:
1) Dirac points in graphene are not at zero 
momentum but at two special points (K and K') in 
the Brillouine zone.
2) Any finite size lattice allows only the discrete set 
of particle's momentum. The allowed values of 
momentum can or can not cover the K-points 
depending on the geometry of the lattice.

This gap is controlled by the size of the lattice. The larger is 
the lattice, the smaller is the gap.

The problem is that «geometrical» mass gap doesn't 
inroduce the primer for the symmetry breaking. So we still are 
unable to detect the formation of any condensates. 

The figure demonstrates the arrangement of possible momentum values inside the Brillouine 
zone. If the lattice sizes are not equal to 6x, the K-points are not covered by latice momentum 
values therefore, we have a «geometrical» mass gap.

But we can use fluctuations of order parameter:

to detect the phase transition.

At the transition point, the spatial correlation radius of the order parameter should tend to infinity. 
Also It is possible to search for the existence of the Goldstone bosons.
Therefore, one should measure the time:                                                    or spatial:

correlators to detect the phase transition

Graphene electronic properties: 

We start from the tight-binding Hamiltonian for the electrons at p
z
 orbitals:

This figure demonstates the distribution of 
the phase Ф for several values of mass. 
Mass term corresponds to the excitonic 
phase transition.

This concept is especially appropriate for this situation, because we are always interested in 
the limit of the zero artificial mass. So the mass term in fermionic operator is realtively small 
and phase of the fermionic operator doesn't fluctuate too huge., 

Here the dependence of the distbution 
width on the mass is shown. The 
distribution width rapidly grows with  the 
mass increases. We should work with 
as small masses as possible.  

Free	fermions	with	only	nearest-neighbor	hoppings:	
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ây,s + â
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âx,s

�
(5)
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⇣
e
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��Ĥ(2)e
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:
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tan2 ⇠ = tanh(
�U

4
).

Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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where the sign in the second line alternates depending on
the sublattice. The Hamiltonian (8) acquires the follow-
ing form after the transition to the new variables :
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trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
both cases. In the case of the discrete transformation (5),
we arrive at the following representation of the partition
function (1) as a sum over all possible values of ⌫x,t:
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Both fermionic operators are Ns⇥Ns matrices where Ns

is the number of lattice sites in space, h is the matrix
of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns

matrix diag
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e�2i⇠⌫x,t
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includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
In the case of continuous auxiliary fields, we will write

the HS transformation in more general way employing
both real (7) and complex (6) exponents:
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Parameter ↵ 2 [0, 1] defines the balance between real
and complex exponents in the integral. The first four-
fermionic term can be transformed into bilinear using
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
discrete auxiliary variables [30, 31]. An example of such
a transformation follows from the identity:
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Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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FIG. 1. Average sign in BSS-QMC algorithm, taken from
the ALF (Algorithm for lattice fermions) package [41]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.

sition:

e��Ĥ
⇡ ...e��K̂e��ĤU e��K̂e��ĤU ...+O(�2) (9)

where K̂ is the collection of all bilinear fermionic terms
in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term
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where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.

The details of the construction of the path integral are
straightforward and can be found in [43, 45, 46]. Here
we simply state the explicit form of the partition function
which we have used in our calculations:
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where the fermionic operators are given by
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In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle
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Ĥint =
U

2

X

x

(n̂" + n̂# � 1)2 (1)
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ây + h.c.

⌘
(6)

âx = âx," (7)
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†
x
,
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†
x
,
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over Grassmann variables into the form convenient for a
Monte Carlo scheme.

There are two di↵erent ways to convert the interaction
term into bilinear form. The first scheme is based on
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Note that the exponents on the r.h.s. of this identity
are purely imaginary for repulsive interactions U > 0.
One can also write a variant of this transformation lead-
ing to purely real exponents. This and similar repre-
sentations are used in the Blankenbecler-Scalapino-Sugar
(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):
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Ĥ = �
X

hx,yi,�

ĉ†
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(â†
x
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x
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x
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(BSS) QMC algorithm which is widely applied to the
physics of the Hubbard model [32, 33]. Another variant
is based on the usual Gaussian HS transformation:
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It can be used in two variants leading to real (7) and com-
plex (6) exponents. This representation has an important
advantage in that it also works for non-local interactions,
so that we do not need to introduce a new auxiliary field
for every pair of interacting electrons. Thus it was used,
for instance, for the Hubbard-Coulomb model [28, 34–
37]. However, in the case of pure Hubbard model with
only on-site interaction the number of discrete auxiliary
fields in the first representation (5) is equal to the number
of continuous fields in (6) or (7). Thus, due to smaller
configuration space, the discrete representation is more
advantageous at least if the sign problem is absent.

Now let’s turn to the appearance of the sign prob-
lem. In special cases where some additional symmetries
(e.g. the time-reversal symmetry [38]) exist, the extended
Hubbard model is accessible to QMC simulations. In par-
ticular, they are possible in the case of a bipartite lattice.
Thus we are going to concentrate on the following Hamil-
tonian written on a bipartite lattice with only the on-site
interaction term:
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X

hx,yi,�

ĉ†
x�
ĉy� + U

X

x

n̂x"n̂x# �

�
✓
U

2
� µ

◆X

x

(n̂x" + n̂x# � 1). (8)

The tight-binding part includes only hopping to near-
est neighbors. The chemical potential µ defines the shift
from half-filling, which corresponds to µ = 0.0 in our
notation. QMC algorithms in ideal situation (in the ab-
sence of the sign problem) need at least a semi-positive
weight for auxiliary fields. The bipartite lattice provides

us with this possibility at half-filling, after a well-known
trick which transforms spin-up and spin-down electrons
(ĉx," and ĉx,#) to electrons and holes (âx and b̂x):

(
ĉx,", ĉ

†
x," ! âx, â†x,

ĉx,#, ĉ
†
x,# ! ±b̂†x,±b̂x

, (9)

where the sign in the second line alternates depending on
the sublattice. The Hamiltonian (8) acquires the follow-
ing form after the transition to the new variables :
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x
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X

x

(n̂x,el. � n̂x,h.), (10)

where n̂x,el. = â†
x
âx and n̂x,h. = b̂†

x
b̂x are the particle

number operators for electrons and holes respectively.
Now we should make either the discrete (5) or the con-

tinuous (eq. (6) and (7) ) transformation for each expo-
nent in the expression (4) where the interaction part of
the full Hamiltonian appears. Thus, auxiliary fields ac-
quire the Euclidean time index t in addition to the spatial
lattice site index x. Since the interaction is local, only
one auxiliary field variable will appear per lattice site in
both cases. In the case of the discrete transformation (5),
we arrive at the following representation of the partition
function (1) as a sum over all possible values of ⌫x,t:

Zd =
X

⌫x,t

detDel.(⌫x.t) detDh.(⌫x,t), (11)

where Del. and Dh. are fermionic operators for electrons
and holes respectively:

Del.(⌫x,t) = I +
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,

Dh.(⌫x,t) = I +
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e�2i⇠⌫x,t

�⌘
. (12)

Both fermionic operators are Ns⇥Ns matrices where Ns

is the number of lattice sites in space, h is the matrix
of single-particle Hamiltonian which defines the tight-
binding part in the expression (10). The diagonalNs⇥Ns

matrix diag
�
e�2i⇠⌫x,t

�
includes all exponents with aux-

iliary fields belonging to a given Euclidean time slice t.
In the case of continuous auxiliary fields, we will write

the HS transformation in more general way employing
both real (7) and complex (6) exponents:

U

2
(n̂el. � n̂h.)

2 =
↵U

2
(n̂el. � n̂h.)

2 �

� (1� ↵)U

2
(n̂el. + n̂h.)

2 + (1� ↵)U(n̂el. + n̂h.). (13)

Parameter ↵ 2 [0, 1] defines the balance between real
and complex exponents in the integral. The first four-
fermionic term can be transformed into bilinear using
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FIG. 1. Average sign in BSS-QMC algorithm, taken from
the ALF (Algorithm for lattice fermions) package [41]. The
calculations were peformed on a hexagonal 4⇥ 4 lattice with
N⌧ = 256 and � = 20.0; U = 2.0. The discrete auxiliary field
is coupled to spin as this setup corresponds to the minimal
sign problem in BSS-QMC.

sition:

e��Ĥ
⇡ ...e��K̂e��ĤU e��K̂e��ĤU ...+O(�2) (9)

where K̂ is the collection of all bilinear fermionic terms
in Ĥ, and ĤU is the interaction part of the full Hamil-
tonian. Here we have introduced �, which specifies the
discretization of Euclidean time, N⌧� = �, where N⌧ con-
stitutes the Euclidean time extent of the lattice. Below,
we will refer to � in the units of inverse hopping.

One can obtain an additional, nonphysical, degree of
freedom in the Hamiltonian, by applying the following
identity to the interaction term
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q̂2
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x
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2
ŝ2
x
+ (1� ↵)Uŝx, (10)

where ŝx = n̂x,el.+n̂x,h. is the spin operator. We can now
simultaneously introduce two continuous auxiliary fields
by applying the standard Hubbard-Stratonovich trans-
formations to each four-fermion term in (10),
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The first four-fermionic term can be transformed into a
bilinear using (11), and the second using (12). This is not
the most general possible decomposition of four-fermionic
terms into bilinear ones, but the one most commonly
used in QMC algorithms with continuous auxiliary fields.
This representation was first proposed in [42] and was
also used in the recent papers [43, 44]. The parameter
↵ 2 [0, 1] defines the balance between auxiliary fields
coupled with charge (q̂x) and spin (ŝx) density. This
particular representation has an important advantage in
that it also works for non-local interactions, so that we
do not need to introduce a new auxiliary field for every
pair of interacting electrons.

FIG. 2. An illustration of the downward gradient flow pro-
cedure for three thermalized configurations belonging to dif-
ferent thimbles at half filling. The plot shows the evolution
of the action with the flow time. The ensemble consists of a
6⇥ 6 lattice with N⌧ = 256 and � = 20.0, U = 5.0, ↵ = 0.9.
One can clearly see how the configurations end up at three
di↵erent saddle points after completion of the flow.

The details of the construction of the path integral are
straightforward and can be found in [43, 45, 46]. Here
we simply state the explicit form of the partition function
which we have used in our calculations:

Zc=

Z
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where the fermionic operators are given by

Mel.,h. = I +
N⌧Y

⌧=1

h
e��(h±µ)diag
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e±i�x,⌧+�x,⌧

�i
. (14)

In subsequent discussions, we denote the field coupled
to charge density as �x,⌧ , and the field coupled to spin
density as �x,⌧ . The full action, which is used in Monte
Carlo sampling, involves both the bosonic action of the
auxiliary fields as well as the logarithm of the fermionic
determinants, S = S↵ � ln(detMel. detMh.). The total
number of auxiliary fields is equal to N = 2NsN⌧ if ↵ 2

(0, 1), so that both fields participate, and N = NsN⌧ if
↵ = 0, 1, where only one type of field remains.

IV. SADDLE POINTS STUDY

IV.1. Saddle points at half-filling

Our goal is to study realistic lattice volumes in order
to get a quantitative idea of how the thimbles decom-
position (4) looks like when we approach both the ther-
modynamic limit in spatial volume and the continuous
limit in Euclidean time. Unfortunately, at large lattice
volumes, the fully analytical approach for finding saddle
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Cik (āOkd)
�
c̄Okb

�
(2)
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ây,s + â†
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Fierz	identities:	



Examples of saddles for the Hubbard model on 
hexagonal lattice: spin-coupled field (2)
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FIG. 13. (a) General schematic illustration of the algorithm
which searches for complex saddle points (1D case): c1 is the
initial position, segment c1� c2 corresponds to the downward
flow, segment c2 � c3 corresponds to the upward flow and
so on. (b) Example of search processes for a 2 ⇥ 2 lattice
with N⌧ = 256, � = 20.0, U = 2.0, µ =  and ↵ = 1.0:
shorter process converges to vacuum saddle point and longer
one shows convergence to non-vacuum localized saddle point.
(c) Example search process for a 6⇥ 6 lattice with N⌧ = 256,
� = 20.0, U = 2.0, µ =  and ↵ = 0.9: it illustrates the
case when the process collides with a zero of the determinant
on the way, seen in the large spikes for both the real and
imaginary parts. The y-axis in figures (b) and (c) labels the
sum of the squares of the first derivatives of ReS with respect
to the real or imaginary parts of the fields at each site.
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FIG. 14. The distribution of the action of saddle point con-
figurations at µ =  for ↵ = 1.0⇥10�4. Results are shown for
a 6⇥6 lattice with N⌧ = 256 and � = 20.0, U = 3.8. Saddle
points with positive and negative sign are shown separately in
red and green respectively. Inset: History of ImS during an
HMC update of the field configuration showing the tunneling
between thimbles.
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FIG. 15. Schematic diagrams which explain the appearance
of “negative” thimbles at nonzero chemical potential in the
case when only the spin-coupled field is present (↵ = 0.0)

at small coupling, the trivial vacuum is the only rele-
vant saddle. As we move to larger coupling, multiple
non-trivial relevant saddles appear and above U ⇡ 3.4,
we see two of them which are evenly spaced. Thus, we
should expect that, at fixed ↵ and large U , more and
more non-trivial multi-blob saddles become relevant once
we approach AFM phase. This interpretation is also sup-
ported by the previous histograms cf. Fig. 8.
Finally, in Fig. 12(a) we show how the situation be-

comes worse as we further increase the parameter ↵, thus
suggesting that there exists a “sweet spot” which pos-
sesses an advantageous structure for the thimbles decom-
position. This regime is illustrated in Fig. 12(b), where
even for large lattices (12⇥ 12) at U = 3.8 (which cor-
responds to the AFM phase transition), only the vacuum
saddle contributes at ↵ = 0.8. One can compare this sit-
uation with that depicted in the lower panel middle plot
of Fig. 8. A more detailed study of this regime is made
below, accompanied by the study of saddles points away
from half-filling.

V.2. Saddle points at nonzero chemical potential

Away from half-filling one can not rely on the naive
application of the GF equations in order to find the sad-
dle points. This is due to the fact that the downward
GF ends up on a saddle point only if the initial configu-
ration was exactly on the corresponding thimble. Since
we can not generate those configurations (at least with-
out prior knowledge about the saddle points), another
method should be employed. We use a procedure simi-
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Analytical solution for instantons (1)
S =

∑x,τ (ϕx,τ)2

2UΔτ
− ln det (Mel.Mh.)

∂S
∂ϕx,τx

=
ϕx,τ

ΔτU
− (g2τ

xxieiϕx,τ − g2τ
xxie−iϕx,τ) = 0 ϕx,τ = − U Im gτ

xx

d
dτ Im gxx(τ) = 6κ Im gxy(τ)

d
dτ Im gxy(τ) = iUgxy(τ)Im gxx(τ) + iκ Im gxx(τ)

 +Euclidean time evolution for equal-time GF

 (locality of the solution is taken into account)

Nearest neighbors

G = U/κ

Δτ → 0

Im gxx(τ) = d(τ), Re gxx(τ) = 1/2, gxy(τ) = a(τ) + ib(τ)
g<xy> |vac. = − 1/G + R

At half-filling:

g(τ+1) = {e−iϕx,(τ+1)}eΔτhgτ{eiϕx,(τ+1)}e−Δτh

a(τ) = − 1/G + R cos θ(τ)
b(τ) = R sin θ(τ)

d(τ) = ·θ(τ)/G
··θ(s) = sin θ(s), s = κτ 6GR, s = 0...κβ 6GR



·θ2

2
+ cos θ = E0 β/Ninst. = 2∫

π

0

dθ
2(E0 − cos θ)

τw ≈
1

6GR

Number of instantons and anti-instantons fixes the initial conditions

Instanton and anti-
instanton:

Two instantons:
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everywhere except in the close vicinity of the instan-
ton core. Our assumptions about the equal-time fermion
Green’s function, computed in the background of an in-
stanton centered at spatial lattice site x, can be summa-
rized as follows: we take into account only Im gxx(⌧) and
ghxyi(⌧), and the latter components of the Green function
are equal for all three nearest neighbours.

Under these assumptions, (B13) simplifies greatly and
takes the form
(

d

d⌧
Im gxx(⌧) = 6 Im gxy(⌧)

d

d⌧
Im gxy(⌧) = iUgxy(⌧) Im gxx(⌧) + i Im gxx(⌧)

.(B18)

Separating the real and imaginary parts of the above
equations gives the following set of coupled, first-order
di↵erential equations

ḋ(⌧) = 6b(⌧), (B19)

ḃ(⌧) = Ud(⌧)
�
a(⌧) +G�1

�
, (B20)

ȧ(⌧) = �Uḃ(⌧)d(⌧), (B21)

where gxy(⌧) = a(⌧)+ ib(⌧), Im gxx = d(⌧), and we have
defined the dimensionless ratio G ⌘ U/. From (B20)
and (B21), it is straightforward to see that the solutions
can be written in the form

a(⌧) = �G�1 +R cos ✓(⌧), (B22)

b(⌧) = R sin ✓(⌧), (B23)

d(⌧) =
✓̇(⌧)

U
, (B24)

where R is a dimensionless constant determined by the
initial conditions far away from the center of instanton,
where the Green’s function gxy(⌧) tends to its vacuum
value. For the imaginary part, this means that Im gxy =
b ! 0, thus ✓ ! 0. For the real part, this means that
Re gxy|vac. = �G�1 + R. Finally, inserting (B24) into
(B19) one obtains a second-order di↵erential equation for
the angle

✓̈(s) = sin ✓(s), (B25)

where we have introduced the rescaled Euclidean time
s ⌘ ⌧

p
6UR. One recognizes (B25) as the equation

of motion satisfied by a physical pendulum where the
angle between the vertical and the pendulum has been
shifted by ⇡. Thus, the vacuum corresponds to the up-
per position of the pendulum, and the instanton solution
corresponds to the trajectory ✓(⌧), which starts near the
upper position of the pendulum, spends a large time in
its vicinity, then quickly performs a rotation through the
bottom position. If the initial velocity ✓̇ is large enough
to make one or more full rotations during the period
sfull = �

p
6UR, we have a solution with Ninst. instan-

tons. If the initial velocity is not large enough in order
to pass over the highest point, the pendulum goes in the
opposite direction during the second half of the period
and we have an instanton-anti-instanton solution.

The number of instantons can be connected to the ini-
tial conditions of the pendulum using the analogy with
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FIG. B.1. Analytical profiles for instantons obtained from Eq.
(B25) for the case of single-instanton (a and b) and instanton-
anti-instanton (c and d) solutions. Figures (a) and (c) show
the derivative ✓̇, while the plots (b) and (d) show the ✓ angle
itself.

classical mechanics. Energy conservation in this case
takes the form

✓̇2

2
+ cos ✓ = E0. (B26)

Then, the initial conditions for the Ninst. solution can
be written as ✓|⌧=0 = 0, ✓̇|⌧=0 =

p
2(E0 � 1), and E0 is

defined by the number of instantons:
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2(E0 � cos ✓)

(B27)

Example solutions of the equation (B25), with ini-
tial conditions corresponding to a single instanton and
instanton-anti-instanton pair are shown in Figure B.1.
One can see how the single instanton solution corre-
sponds to the transition of ✓ angle between two equiv-
alent values 0 and 2⇡, while ✓ returns to 0 in the case
of the instanton-anti-instanton saddle. This observation
allows us to introduce the winding number

W =
1

2⇡

Z
�

0
d⌧✓(⌧), (B28)

which is equal to the di↵erence between the number of
instantons and anti-instantons at a given site.

Appendix C: Hessians for N-instanton saddle points

In this Appendix the properties of the Hessians around
saddle points containing one or more instantons are dis-
cussed in further detail. This is necessary, as the treat-
ment of the Hessian is a crucial ingredient of the instan-
ton gas model.

26

everywhere except in the close vicinity of the instan-
ton core. Our assumptions about the equal-time fermion
Green’s function, computed in the background of an in-
stanton centered at spatial lattice site x, can be summa-
rized as follows: we take into account only Im gxx(⌧) and
ghxyi(⌧), and the latter components of the Green function
are equal for all three nearest neighbours.

Under these assumptions, (B13) simplifies greatly and
takes the form
(

d

d⌧
Im gxx(⌧) = 6 Im gxy(⌧)

d

d⌧
Im gxy(⌧) = iUgxy(⌧) Im gxx(⌧) + i Im gxx(⌧)

.(B18)

Separating the real and imaginary parts of the above
equations gives the following set of coupled, first-order
di↵erential equations

ḋ(⌧) = 6b(⌧), (B19)

ḃ(⌧) = Ud(⌧)
�
a(⌧) +G�1

�
, (B20)

ȧ(⌧) = �Uḃ(⌧)d(⌧), (B21)

where gxy(⌧) = a(⌧)+ ib(⌧), Im gxx = d(⌧), and we have
defined the dimensionless ratio G ⌘ U/. From (B20)
and (B21), it is straightforward to see that the solutions
can be written in the form

a(⌧) = �G�1 +R cos ✓(⌧), (B22)

b(⌧) = R sin ✓(⌧), (B23)

d(⌧) =
✓̇(⌧)

U
, (B24)

where R is a dimensionless constant determined by the
initial conditions far away from the center of instanton,
where the Green’s function gxy(⌧) tends to its vacuum
value. For the imaginary part, this means that Im gxy =
b ! 0, thus ✓ ! 0. For the real part, this means that
Re gxy|vac. = �G�1 + R. Finally, inserting (B24) into
(B19) one obtains a second-order di↵erential equation for
the angle

✓̈(s) = sin ✓(s), (B25)

where we have introduced the rescaled Euclidean time
s ⌘ ⌧

p
6UR. One recognizes (B25) as the equation

of motion satisfied by a physical pendulum where the
angle between the vertical and the pendulum has been
shifted by ⇡. Thus, the vacuum corresponds to the up-
per position of the pendulum, and the instanton solution
corresponds to the trajectory ✓(⌧), which starts near the
upper position of the pendulum, spends a large time in
its vicinity, then quickly performs a rotation through the
bottom position. If the initial velocity ✓̇ is large enough
to make one or more full rotations during the period
sfull = �

p
6UR, we have a solution with Ninst. instan-

tons. If the initial velocity is not large enough in order
to pass over the highest point, the pendulum goes in the
opposite direction during the second half of the period
and we have an instanton-anti-instanton solution.

The number of instantons can be connected to the ini-
tial conditions of the pendulum using the analogy with
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FIG. B.1. Analytical profiles for instantons obtained from Eq.
(B25) for the case of single-instanton (a and b) and instanton-
anti-instanton (c and d) solutions. Figures (a) and (c) show
the derivative ✓̇, while the plots (b) and (d) show the ✓ angle
itself.

classical mechanics. Energy conservation in this case
takes the form

✓̇2

2
+ cos ✓ = E0. (B26)

Then, the initial conditions for the Ninst. solution can
be written as ✓|⌧=0 = 0, ✓̇|⌧=0 =

p
2(E0 � 1), and E0 is

defined by the number of instantons:
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Example solutions of the equation (B25), with ini-
tial conditions corresponding to a single instanton and
instanton-anti-instanton pair are shown in Figure B.1.
One can see how the single instanton solution corre-
sponds to the transition of ✓ angle between two equiv-
alent values 0 and 2⇡, while ✓ returns to 0 in the case
of the instanton-anti-instanton saddle. This observation
allows us to introduce the winding number

W =
1

2⇡

Z
�

0
d⌧✓(⌧), (B28)

which is equal to the di↵erence between the number of
instantons and anti-instantons at a given site.

Appendix C: Hessians for N-instanton saddle points

In this Appendix the properties of the Hessians around
saddle points containing one or more instantons are dis-
cussed in further detail. This is necessary, as the treat-
ment of the Hessian is a crucial ingredient of the instan-
ton gas model.
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everywhere except in the close vicinity of the instan-
ton core. Our assumptions about the equal-time fermion
Green’s function, computed in the background of an in-
stanton centered at spatial lattice site x, can be summa-
rized as follows: we take into account only Im gxx(⌧) and
ghxyi(⌧), and the latter components of the Green function
are equal for all three nearest neighbours.

Under these assumptions, (B13) simplifies greatly and
takes the form
(
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Im gxx(⌧) = 6 Im gxy(⌧)
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Im gxy(⌧) = iUgxy(⌧) Im gxx(⌧) + i Im gxx(⌧)
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Separating the real and imaginary parts of the above
equations gives the following set of coupled, first-order
di↵erential equations

ḋ(⌧) = 6b(⌧), (B19)

ḃ(⌧) = Ud(⌧)
�
a(⌧) +G�1
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, (B20)

ȧ(⌧) = �Uḃ(⌧)d(⌧), (B21)

where gxy(⌧) = a(⌧)+ ib(⌧), Im gxx = d(⌧), and we have
defined the dimensionless ratio G ⌘ U/. From (B20)
and (B21), it is straightforward to see that the solutions
can be written in the form

a(⌧) = �G�1 +R cos ✓(⌧), (B22)

b(⌧) = R sin ✓(⌧), (B23)

d(⌧) =
✓̇(⌧)

U
, (B24)

where R is a dimensionless constant determined by the
initial conditions far away from the center of instanton,
where the Green’s function gxy(⌧) tends to its vacuum
value. For the imaginary part, this means that Im gxy =
b ! 0, thus ✓ ! 0. For the real part, this means that
Re gxy|vac. = �G�1 + R. Finally, inserting (B24) into
(B19) one obtains a second-order di↵erential equation for
the angle

✓̈(s) = sin ✓(s), (B25)

where we have introduced the rescaled Euclidean time
s ⌘ ⌧

p
6UR. One recognizes (B25) as the equation

of motion satisfied by a physical pendulum where the
angle between the vertical and the pendulum has been
shifted by ⇡. Thus, the vacuum corresponds to the up-
per position of the pendulum, and the instanton solution
corresponds to the trajectory ✓(⌧), which starts near the
upper position of the pendulum, spends a large time in
its vicinity, then quickly performs a rotation through the
bottom position. If the initial velocity ✓̇ is large enough
to make one or more full rotations during the period
sfull = �

p
6UR, we have a solution with Ninst. instan-

tons. If the initial velocity is not large enough in order
to pass over the highest point, the pendulum goes in the
opposite direction during the second half of the period
and we have an instanton-anti-instanton solution.

The number of instantons can be connected to the ini-
tial conditions of the pendulum using the analogy with
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FIG. B.1. Analytical profiles for instantons obtained from Eq.
(B25) for the case of single-instanton (a and b) and instanton-
anti-instanton (c and d) solutions. Figures (a) and (c) show
the derivative ✓̇, while the plots (b) and (d) show the ✓ angle
itself.

classical mechanics. Energy conservation in this case
takes the form

✓̇2

2
+ cos ✓ = E0. (B26)

Then, the initial conditions for the Ninst. solution can
be written as ✓|⌧=0 = 0, ✓̇|⌧=0 =

p
2(E0 � 1), and E0 is

defined by the number of instantons:
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(B27)

Example solutions of the equation (B25), with ini-
tial conditions corresponding to a single instanton and
instanton-anti-instanton pair are shown in Figure B.1.
One can see how the single instanton solution corre-
sponds to the transition of ✓ angle between two equiv-
alent values 0 and 2⇡, while ✓ returns to 0 in the case
of the instanton-anti-instanton saddle. This observation
allows us to introduce the winding number

W =
1

2⇡

Z
�

0
d⌧✓(⌧), (B28)

which is equal to the di↵erence between the number of
instantons and anti-instantons at a given site.

Appendix C: Hessians for N-instanton saddle points

In this Appendix the properties of the Hessians around
saddle points containing one or more instantons are dis-
cussed in further detail. This is necessary, as the treat-
ment of the Hessian is a crucial ingredient of the instan-
ton gas model.
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everywhere except in the close vicinity of the instan-
ton core. Our assumptions about the equal-time fermion
Green’s function, computed in the background of an in-
stanton centered at spatial lattice site x, can be summa-
rized as follows: we take into account only Im gxx(⌧) and
ghxyi(⌧), and the latter components of the Green function
are equal for all three nearest neighbours.

Under these assumptions, (B13) simplifies greatly and
takes the form
(
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d⌧
Im gxx(⌧) = 6 Im gxy(⌧)

d

d⌧
Im gxy(⌧) = iUgxy(⌧) Im gxx(⌧) + i Im gxx(⌧)

.(B18)

Separating the real and imaginary parts of the above
equations gives the following set of coupled, first-order
di↵erential equations

ḋ(⌧) = 6b(⌧), (B19)

ḃ(⌧) = Ud(⌧)
�
a(⌧) +G�1

�
, (B20)

ȧ(⌧) = �Uḃ(⌧)d(⌧), (B21)

where gxy(⌧) = a(⌧)+ ib(⌧), Im gxx = d(⌧), and we have
defined the dimensionless ratio G ⌘ U/. From (B20)
and (B21), it is straightforward to see that the solutions
can be written in the form

a(⌧) = �G�1 +R cos ✓(⌧), (B22)

b(⌧) = R sin ✓(⌧), (B23)

d(⌧) =
✓̇(⌧)

U
, (B24)

where R is a dimensionless constant determined by the
initial conditions far away from the center of instanton,
where the Green’s function gxy(⌧) tends to its vacuum
value. For the imaginary part, this means that Im gxy =
b ! 0, thus ✓ ! 0. For the real part, this means that
Re gxy|vac. = �G�1 + R. Finally, inserting (B24) into
(B19) one obtains a second-order di↵erential equation for
the angle

✓̈(s) = sin ✓(s), (B25)

where we have introduced the rescaled Euclidean time
s ⌘ ⌧

p
6UR. One recognizes (B25) as the equation

of motion satisfied by a physical pendulum where the
angle between the vertical and the pendulum has been
shifted by ⇡. Thus, the vacuum corresponds to the up-
per position of the pendulum, and the instanton solution
corresponds to the trajectory ✓(⌧), which starts near the
upper position of the pendulum, spends a large time in
its vicinity, then quickly performs a rotation through the
bottom position. If the initial velocity ✓̇ is large enough
to make one or more full rotations during the period
sfull = �

p
6UR, we have a solution with Ninst. instan-

tons. If the initial velocity is not large enough in order
to pass over the highest point, the pendulum goes in the
opposite direction during the second half of the period
and we have an instanton-anti-instanton solution.

The number of instantons can be connected to the ini-
tial conditions of the pendulum using the analogy with
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FIG. B.1. Analytical profiles for instantons obtained from Eq.
(B25) for the case of single-instanton (a and b) and instanton-
anti-instanton (c and d) solutions. Figures (a) and (c) show
the derivative ✓̇, while the plots (b) and (d) show the ✓ angle
itself.

classical mechanics. Energy conservation in this case
takes the form

✓̇2

2
+ cos ✓ = E0. (B26)

Then, the initial conditions for the Ninst. solution can
be written as ✓|⌧=0 = 0, ✓̇|⌧=0 =

p
2(E0 � 1), and E0 is

defined by the number of instantons:
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Example solutions of the equation (B25), with ini-
tial conditions corresponding to a single instanton and
instanton-anti-instanton pair are shown in Figure B.1.
One can see how the single instanton solution corre-
sponds to the transition of ✓ angle between two equiv-
alent values 0 and 2⇡, while ✓ returns to 0 in the case
of the instanton-anti-instanton saddle. This observation
allows us to introduce the winding number

W =
1

2⇡

Z
�

0
d⌧✓(⌧), (B28)

which is equal to the di↵erence between the number of
instantons and anti-instantons at a given site.

Appendix C: Hessians for N-instanton saddle points

In this Appendix the properties of the Hessians around
saddle points containing one or more instantons are dis-
cussed in further detail. This is necessary, as the treat-
ment of the Hessian is a crucial ingredient of the instan-
ton gas model.

26

everywhere except in the close vicinity of the instan-
ton core. Our assumptions about the equal-time fermion
Green’s function, computed in the background of an in-
stanton centered at spatial lattice site x, can be summa-
rized as follows: we take into account only Im gxx(⌧) and
ghxyi(⌧), and the latter components of the Green function
are equal for all three nearest neighbours.

Under these assumptions, (B13) simplifies greatly and
takes the form
(
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Im gxx(⌧) = 6 Im gxy(⌧)
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d⌧
Im gxy(⌧) = iUgxy(⌧) Im gxx(⌧) + i Im gxx(⌧)
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Separating the real and imaginary parts of the above
equations gives the following set of coupled, first-order
di↵erential equations

ḋ(⌧) = 6b(⌧), (B19)

ḃ(⌧) = Ud(⌧)
�
a(⌧) +G�1

�
, (B20)

ȧ(⌧) = �Uḃ(⌧)d(⌧), (B21)

where gxy(⌧) = a(⌧)+ ib(⌧), Im gxx = d(⌧), and we have
defined the dimensionless ratio G ⌘ U/. From (B20)
and (B21), it is straightforward to see that the solutions
can be written in the form

a(⌧) = �G�1 +R cos ✓(⌧), (B22)

b(⌧) = R sin ✓(⌧), (B23)

d(⌧) =
✓̇(⌧)

U
, (B24)

where R is a dimensionless constant determined by the
initial conditions far away from the center of instanton,
where the Green’s function gxy(⌧) tends to its vacuum
value. For the imaginary part, this means that Im gxy =
b ! 0, thus ✓ ! 0. For the real part, this means that
Re gxy|vac. = �G�1 + R. Finally, inserting (B24) into
(B19) one obtains a second-order di↵erential equation for
the angle

✓̈(s) = sin ✓(s), (B25)

where we have introduced the rescaled Euclidean time
s ⌘ ⌧

p
6UR. One recognizes (B25) as the equation

of motion satisfied by a physical pendulum where the
angle between the vertical and the pendulum has been
shifted by ⇡. Thus, the vacuum corresponds to the up-
per position of the pendulum, and the instanton solution
corresponds to the trajectory ✓(⌧), which starts near the
upper position of the pendulum, spends a large time in
its vicinity, then quickly performs a rotation through the
bottom position. If the initial velocity ✓̇ is large enough
to make one or more full rotations during the period
sfull = �

p
6UR, we have a solution with Ninst. instan-

tons. If the initial velocity is not large enough in order
to pass over the highest point, the pendulum goes in the
opposite direction during the second half of the period
and we have an instanton-anti-instanton solution.

The number of instantons can be connected to the ini-
tial conditions of the pendulum using the analogy with
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FIG. B.1. Analytical profiles for instantons obtained from Eq.
(B25) for the case of single-instanton (a and b) and instanton-
anti-instanton (c and d) solutions. Figures (a) and (c) show
the derivative ✓̇, while the plots (b) and (d) show the ✓ angle
itself.

classical mechanics. Energy conservation in this case
takes the form

✓̇2

2
+ cos ✓ = E0. (B26)

Then, the initial conditions for the Ninst. solution can
be written as ✓|⌧=0 = 0, ✓̇|⌧=0 =

p
2(E0 � 1), and E0 is

defined by the number of instantons:
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Example solutions of the equation (B25), with ini-
tial conditions corresponding to a single instanton and
instanton-anti-instanton pair are shown in Figure B.1.
One can see how the single instanton solution corre-
sponds to the transition of ✓ angle between two equiv-
alent values 0 and 2⇡, while ✓ returns to 0 in the case
of the instanton-anti-instanton saddle. This observation
allows us to introduce the winding number

W =
1

2⇡

Z
�

0
d⌧✓(⌧), (B28)

which is equal to the di↵erence between the number of
instantons and anti-instantons at a given site.

Appendix C: Hessians for N-instanton saddle points

In this Appendix the properties of the Hessians around
saddle points containing one or more instantons are dis-
cussed in further detail. This is necessary, as the treat-
ment of the Hessian is a crucial ingredient of the instan-
ton gas model.

Winding number:

Analytical solution is possible in terms of elliptic integrals.

ϕτ
x = − U Im ḡτ

xx

Im gxx(τ) = d(τ)

d(τ) = ·θ(τ)/G

Reminder:

Analytical solution for instantons (2)



Role of continuous symmetries
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everywhere except in the close vicinity of the instan-
ton core. Our assumptions about the equal-time fermion
Green’s function, computed in the background of an in-
stanton centered at spatial lattice site x, can be summa-
rized as follows: we take into account only Im gxx(⌧) and
ghxyi(⌧), and the latter components of the Green function
are equal for all three nearest neighbours.

Under these assumptions, (B13) simplifies greatly and
takes the form
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Im gxy(⌧) = iUgxy(⌧) Im gxx(⌧) + i Im gxx(⌧)
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Separating the real and imaginary parts of the above
equations gives the following set of coupled, first-order
di↵erential equations

ḋ(⌧) = 6b(⌧), (B19)

ḃ(⌧) = Ud(⌧)
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a(⌧) +G�1
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, (B20)

ȧ(⌧) = �Uḃ(⌧)d(⌧), (B21)

where gxy(⌧) = a(⌧)+ ib(⌧), Im gxx = d(⌧), and we have
defined the dimensionless ratio G ⌘ U/. From (B20)
and (B21), it is straightforward to see that the solutions
can be written in the form

a(⌧) = �G�1 +R cos ✓(⌧), (B22)

b(⌧) = R sin ✓(⌧), (B23)

d(⌧) =
✓̇(⌧)

U
, (B24)

where R is a dimensionless constant determined by the
initial conditions far away from the center of instanton,
where the Green’s function gxy(⌧) tends to its vacuum
value. For the imaginary part, this means that Im gxy =
b ! 0, thus ✓ ! 0. For the real part, this means that
Re gxy|vac. = �G�1 + R. Finally, inserting (B24) into
(B19) one obtains a second-order di↵erential equation for
the angle

✓̈(s) = sin ✓(s), (B25)

where we have introduced the rescaled Euclidean time
s ⌘ ⌧

p
6UR. One recognizes (B25) as the equation

of motion satisfied by a physical pendulum where the
angle between the vertical and the pendulum has been
shifted by ⇡. Thus, the vacuum corresponds to the up-
per position of the pendulum, and the instanton solution
corresponds to the trajectory ✓(⌧), which starts near the
upper position of the pendulum, spends a large time in
its vicinity, then quickly performs a rotation through the
bottom position. If the initial velocity ✓̇ is large enough
to make one or more full rotations during the period
sfull = �

p
6UR, we have a solution with Ninst. instan-

tons. If the initial velocity is not large enough in order
to pass over the highest point, the pendulum goes in the
opposite direction during the second half of the period
and we have an instanton-anti-instanton solution.

The number of instantons can be connected to the ini-
tial conditions of the pendulum using the analogy with
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FIG. B.1. Analytical profiles for instantons obtained from Eq.
(B25) for the case of single-instanton (a and b) and instanton-
anti-instanton (c and d) solutions. Figures (a) and (c) show
the derivative ✓̇, while the plots (b) and (d) show the ✓ angle
itself.

classical mechanics. Energy conservation in this case
takes the form

✓̇2

2
+ cos ✓ = E0. (B26)

Then, the initial conditions for the Ninst. solution can
be written as ✓|⌧=0 = 0, ✓̇|⌧=0 =

p
2(E0 � 1), and E0 is

defined by the number of instantons:

sfull
Ninst.

= 2

Z
⇡

0

d✓p
2(E0 � cos ✓)

(B27)

Example solutions of the equation (B25), with ini-
tial conditions corresponding to a single instanton and
instanton-anti-instanton pair are shown in Figure B.1.
One can see how the single instanton solution corre-
sponds to the transition of ✓ angle between two equiv-
alent values 0 and 2⇡, while ✓ returns to 0 in the case
of the instanton-anti-instanton saddle. This observation
allows us to introduce the winding number

W =
1

2⇡

Z
�

0
d⌧✓(⌧), (B28)

which is equal to the di↵erence between the number of
instantons and anti-instantons at a given site.

Appendix C: Hessians for N-instanton saddle points

In this Appendix the properties of the Hessians around
saddle points containing one or more instantons are dis-
cussed in further detail. This is necessary, as the treat-
ment of the Hessian is a crucial ingredient of the instan-
ton gas model.
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where

H(1)
(x,⌧1),(y,⌧2)

=
@2S(�)

@�x,⌧1@�y,⌧2

����
�=�(X,T )

(16)

is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:

Z1 = 2NS

Z

O(1)

d�̃0ZP

1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:

d�̃0 = ||�(X,T+dT ) � �(X,T )|| (18)

such that the length of the valley is

L(1) =

Z
�

0
dT

����

����
�(X,T+dT ) � �(X,T )

dT

����

���� . (19)

In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values

L(1) = N⌧

sX

x,⌧

⇣
�(X,0)
x,⌧ � �(X,�⌧)

x,⌧

⌘2
. (20)

Alternatively, we can take into account that the field

configuration �(X,T )
x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
⌧̃ 2 [0;�): ⌧ = ⌧̃/�⌧ . Thus

L(1)

�
= ||��(X,T )|| =

vuuut
X

x,⌧

 
�(X,T )
x,⌧+1 � �(X,T )

x,⌧

�⌧

!2

, (21)

where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP

1 ({�(X,T )}) =
Z NSN⌧�1Y

i=1

d�̃ie
�S

(1)� 1
2

PNSN⌧�1
i=1 �

(1)
i �̃

2
i .

(22)
Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just

Z1 = 2NSZP

1 ({�(X,T )})
Z

O(1)

d�̃0

= 2NSZP

1 ({�(X,T )})L(1). (23)

Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as

Z1 = 2NSL
(1)e�S

(1)

s
(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (24)

Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain

Z1 = 2NS�e
�S

(1)

||��(X,T )||
s

(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (25)

If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y

i=1

�(1)
i

, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)

!�1/2

, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:

Z1 = 2NS

Z

O(1)

d�̃0ZP

1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:

d�̃0 = ||�(X,T+dT ) � �(X,T )|| (18)

such that the length of the valley is
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In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values

L(1) = N⌧

sX
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. (20)

Alternatively, we can take into account that the field

configuration �(X,T )
x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
⌧̃ 2 [0;�): ⌧ = ⌧̃/�⌧ . Thus
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP

1 ({�(X,T )}) =
Z NSN⌧�1Y

i=1

d�̃ie
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(1)� 1
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PNSN⌧�1
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Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just

Z1 = 2NSZP

1 ({�(X,T )})
Z

O(1)

d�̃0

= 2NSZP

1 ({�(X,T )})L(1). (23)

Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as

Z1 = 2NSL
(1)e�S

(1)

s
(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (24)

Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain

Z1 = 2NS�e
�S

(1)

||��(X,T )||
s

(2⇡)NSN⌧�1

Q0
i
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i

. (25)

If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y

i=1

�(1)
i

, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)

!�1/2

, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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=
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(16)

is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:

Z1 = 2NS

Z

O(1)

d�̃0ZP

1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:

d�̃0 = ||�(X,T+dT ) � �(X,T )|| (18)

such that the length of the valley is

L(1) =

Z
�

0
dT
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In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values

L(1) = N⌧

sX

x,⌧

⇣
�(X,0)
x,⌧ � �(X,�⌧)
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⌘2
. (20)

Alternatively, we can take into account that the field

configuration �(X,T )
x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
⌧̃ 2 [0;�): ⌧ = ⌧̃/�⌧ . Thus

L(1)
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= ||��(X,T )|| =
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP

1 ({�(X,T )}) =
Z NSN⌧�1Y

i=1

d�̃ie
�S

(1)� 1
2

PNSN⌧�1
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(22)
Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just

Z1 = 2NSZP

1 ({�(X,T )})
Z

O(1)

d�̃0

= 2NSZP

1 ({�(X,T )})L(1). (23)

Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as

Z1 = 2NSL
(1)e�S

(1)

s
(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (24)

Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain

Z1 = 2NS�e
�S

(1)

||��(X,T )||
s

(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (25)

If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y

i=1

�(1)
i

, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)

!�1/2

, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in

8
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����
�=�(X,T )

(16)

is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:

Z1 = 2NS

Z

O(1)

d�̃0ZP

1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:

d�̃0 = ||�(X,T+dT ) � �(X,T )|| (18)

such that the length of the valley is
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In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values

L(1) = N⌧

sX
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⌘2
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Alternatively, we can take into account that the field

configuration �(X,T )
x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:
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Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just
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Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain
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If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
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=
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where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
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(1)e�S̃
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where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in

Gaussian approximation:
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is the Hessian of the one-instanton saddle point. We
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, i = 0...NS � 1.

This set contains the zero mode, �(1)
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above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:
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where 2NS factor describes the trivial discrete spatial and
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1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:
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In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values

L(1) = N⌧

sX

x,⌧

⇣
�(X,0)
x,⌧ � �(X,�⌧)

x,⌧

⌘2
. (20)

Alternatively, we can take into account that the field

configuration �(X,T )
x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
⌧̃ 2 [0;�): ⌧ = ⌧̃/�⌧ . Thus

L(1)

�
= ||��(X,T )|| =

vuuut
X

x,⌧

 
�(X,T )
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, (21)

where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP

1 ({�(X,T )}) =
Z NSN⌧�1Y
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d�̃ie
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2

PNSN⌧�1
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2
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(22)
Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just

Z1 = 2NSZP

1 ({�(X,T )})
Z

O(1)

d�̃0

= 2NSZP

1 ({�(X,T )})L(1). (23)

Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as

Z1 = 2NSL
(1)e�S

(1)

s
(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (24)

Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain

Z1 = 2NS�e
�S

(1)

||��(X,T )||
s

(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (25)

If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y

i=1

�(1)
i

, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)

!�1/2

, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the
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where 2NS factor describes the trivial discrete spatial and
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1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
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according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values
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Alternatively, we can take into account that the field
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x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP

1 ({�(X,T )}) =
Z NSN⌧�1Y

i=1

d�̃ie
�S

(1)� 1
2

PNSN⌧�1
i=1 �

(1)
i �̃

2
i .

(22)
Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just

Z1 = 2NSZP

1 ({�(X,T )})
Z
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= 2NSZP

1 ({�(X,T )})L(1). (23)

Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as

Z1 = 2NSL
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. (24)

Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain

Z1 = 2NS�e
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If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y

i=1
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, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)
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, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:

Z1 = 2NS

Z
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d�̃0ZP

1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:

d�̃0 = ||�(X,T+dT ) � �(X,T )|| (18)
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Z
�

0
dT

����

����
�(X,T+dT ) � �(X,T )

dT

����

���� . (19)

In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values

L(1) = N⌧
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Alternatively, we can take into account that the field

configuration �(X,T )
x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
⌧̃ 2 [0;�): ⌧ = ⌧̃/�⌧ . Thus
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP

1 ({�(X,T )}) =
Z NSN⌧�1Y
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Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just

Z1 = 2NSZP

1 ({�(X,T )})
Z

O(1)

d�̃0

= 2NSZP

1 ({�(X,T )})L(1). (23)

Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as

Z1 = 2NSL
(1)e�S
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s
(2⇡)NSN⌧�1

Q0
i
�(1)
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. (24)

Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain

Z1 = 2NS�e
�S

(1)

||��(X,T )||
s

(2⇡)NSN⌧�1

Q0
i
�(1)
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. (25)

If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y

i=1

�(1)
i

, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)

!�1/2

, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:

Z1 = 2NS

Z

O(1)

d�̃0ZP

1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:

d�̃0 = ||�(X,T+dT ) � �(X,T )|| (18)

such that the length of the valley is
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In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values
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Alternatively, we can take into account that the field

configuration �(X,T )
x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
⌧̃ 2 [0;�): ⌧ = ⌧̃/�⌧ . Thus
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP

1 ({�(X,T )}) =
Z NSN⌧�1Y

i=1

d�̃ie
�S

(1)� 1
2

PNSN⌧�1
i=1 �

(1)
i �̃

2
i .

(22)
Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just

Z1 = 2NSZP

1 ({�(X,T )})
Z

O(1)

d�̃0

= 2NSZP

1 ({�(X,T )})L(1). (23)

Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as

Z1 = 2NSL
(1)e�S
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s
(2⇡)NSN⌧�1

Q0
i
�(1)
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. (24)

Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain

Z1 = 2NS�e
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||��(X,T )||
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(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (25)

If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y

i=1

�(1)
i

, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)

!�1/2

, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:
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Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).
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ical relation given in (13), we restore physical units in
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If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over
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where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL
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where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:
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where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
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Alternatively, we can take into account that the field
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:
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Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
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and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
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sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1
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(1)e�S̃
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, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP

1 ({�(X,T )}) =
Z NSN⌧�1Y

i=1

d�̃ie
�S

(1)� 1
2

PNSN⌧�1
i=1 �

(1)
i �̃

2
i .

(22)
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and the value
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1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
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Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
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If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
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where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)
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where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:
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Z
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1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:
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according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values
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Alternatively, we can take into account that the field
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x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP
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Z NSN⌧�1Y
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Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just

Z1 = 2NSZP

1 ({�(X,T )})
Z
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= 2NSZP

1 ({�(X,T )})L(1). (23)

Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as
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Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain

Z1 = 2NS�e
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. (25)

If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y
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, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)

!�1/2

, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:

Z1 = 2NS

Z

O(1)
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1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:

d�̃0 = ||�(X,T+dT ) � �(X,T )|| (18)
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In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values
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Alternatively, we can take into account that the field

configuration �(X,T )
x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:
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Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
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and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just
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Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain
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If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
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The absence of the zero mode in the product over
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where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion
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where S̃(i) = S(i) � Svac.. In this expression, L(1) is
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the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
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is the Hessian of the one-instanton saddle point. We
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, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:
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where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:
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steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values
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Alternatively, we can take into account that the field
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x,⌧̃ is in fact a function of the di↵er-
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:
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Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just

Z1 = 2NSZP

1 ({�(X,T )})
Z
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d�̃0

= 2NSZP

1 ({�(X,T )})L(1). (23)

Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as

Z1 = 2NSL
(1)e�S

(1)

s
(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (24)

Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain

Z1 = 2NS�e
�S

(1)

||��(X,T )||
s

(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (25)

If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y

i=1

�(1)
i

, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)

!�1/2

, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:
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Z

O(1)
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1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:
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In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values
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Alternatively, we can take into account that the field
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x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:
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Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just
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1 ({�(X,T )})
Z
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d�̃0
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Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as
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Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain
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If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y

i=1

�(1)
i

, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)

!�1/2

, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:

Z1 = 2NS

Z

O(1)

d�̃0ZP

1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:

d�̃0 = ||�(X,T+dT ) � �(X,T )|| (18)
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In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values

L(1) = N⌧

sX

x,⌧

⇣
�(X,0)
x,⌧ � �(X,�⌧)

x,⌧

⌘2
. (20)

Alternatively, we can take into account that the field

configuration �(X,T )
x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
⌧̃ 2 [0;�): ⌧ = ⌧̃/�⌧ . Thus

L(1)
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP

1 ({�(X,T )}) =
Z NSN⌧�1Y

i=1

d�̃ie
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Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just

Z1 = 2NSZP

1 ({�(X,T )})
Z

O(1)

d�̃0

= 2NSZP

1 ({�(X,T )})L(1). (23)

Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as

Z1 = 2NSL
(1)e�S
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s
(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (24)

Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain

Z1 = 2NS�e
�S

(1)

||��(X,T )||
s

(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (25)

If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y

i=1

�(1)
i

, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)

!�1/2

, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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=
@2S(�)

@�x,⌧1@�y,⌧2

����
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(16)

is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:

Z1 = 2NS

Z

O(1)

d�̃0ZP

1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:

d�̃0 = ||�(X,T+dT ) � �(X,T )|| (18)

such that the length of the valley is

L(1) =

Z
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In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values

L(1) = N⌧

sX

x,⌧

⇣
�(X,0)
x,⌧ � �(X,�⌧)
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⌘2
. (20)

Alternatively, we can take into account that the field

configuration �(X,T )
x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
⌧̃ 2 [0;�): ⌧ = ⌧̃/�⌧ . Thus

L(1)
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= ||��(X,T )|| =
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP

1 ({�(X,T )}) =
Z NSN⌧�1Y

i=1

d�̃ie
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PNSN⌧�1
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Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just

Z1 = 2NSZP

1 ({�(X,T )})
Z

O(1)

d�̃0

= 2NSZP

1 ({�(X,T )})L(1). (23)

Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as

Z1 = 2NSL
(1)e�S
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s
(2⇡)NSN⌧�1

Q0
i
�(1)
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. (24)

Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain

Z1 = 2NS�e
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||��(X,T )||
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(2⇡)NSN⌧�1

Q0
i
�(1)
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. (25)

If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y

i=1

�(1)
i

, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)

!�1/2

, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:

Z1 = 2NS

Z

O(1)

d�̃0ZP

1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:

d�̃0 = ||�(X,T+dT ) � �(X,T )|| (18)

such that the length of the valley is
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In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values
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Alternatively, we can take into account that the field

configuration �(X,T )
x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
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where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP
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Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
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and the value
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Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain
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If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
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H(1) + P(1)
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=
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, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡
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?
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where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in
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is the Hessian of the one-instanton saddle point. We

denote the eigenvalues of H(1) as �(1)
i

, i = 0...NS � 1.

This set contains the zero mode, �(1)
0 = 0, due to the

above-mentioned translational symmetry.
Now, Z1 can be written as the line integral along the

curve O(1) in configuration space:

Z1 = 2NS

Z
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d�̃0ZP

1 ({�(X,T )}), (17)

where 2NS factor describes the trivial discrete spatial and
instanton - anti-instanton degeneracies and ZP

1 is what
we will refer to as the partial partition function. Here we
have introduced d�̃0, which is the di↵erential arc length
of the O(1) curve:
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In practice, L(1) on the lattice is the collection of N⌧

steps, each corresponding to the shift T ! T+�⌧ . Thus,
according to (19) , L(1) can be approximated by the fol-
lowing finite di↵erence of field values

L(1) = N⌧

sX

x,⌧

⇣
�(X,0)
x,⌧ � �(X,�⌧)

x,⌧

⌘2
. (20)

Alternatively, we can take into account that the field

configuration �(X,T )
x,⌧̃ is in fact a function of the di↵er-

ence ⌧̃ �T , where the dimensional Euclidean time index:
⌧̃ 2 [0;�): ⌧ = ⌧̃/�⌧ . Thus

L(1)

�
= ||��(X,T )|| =

vuuut
X

x,⌧

 
�(X,T )
x,⌧+1 � �(X,T )

x,⌧

�⌧

!2

, (21)

where ||��(X,T )|| is the norm of the lattice derivative of
the one-instanton field configuration with respect to the
physical Euclidean time.

The partial partition function ZP

1 ({�(X,T )}) describes
the Gaussian fluctuations around the configuration
�(X,T ) in all directions except the one corresponding to
the zero mode:

ZP

1 ({�(X,T )}) =
Z NSN⌧�1Y

i=1

d�̃ie
�S

(1)� 1
2

PNSN⌧�1
i=1 �

(1)
i �̃

2
i .

(22)
Here, �̃i are the coordinates in configuration space in
the directions of the corresponding eigenvectors of the

Hessian H(1), computed for the configuration �(X,T ).

Now, the eigenvalues of the Hessian �(1)
i

and the value
of ZP

1 ({�(X,T )}) are in fact independent of the coordi-
nates of the instanton center (X,T ). This means that
the integral (23) boils down to just

Z1 = 2NSZP

1 ({�(X,T )})
Z

O(1)

d�̃0

= 2NSZP

1 ({�(X,T )})L(1). (23)

Performing the Gaussian integral in (22), the final ex-
pression for Z1 reads as

Z1 = 2NSL
(1)e�S

(1)

s
(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (24)

Here, the product of the eigenvalues of the Hessian in
the denominator excludes the zero mode, for a total of
NsN⌧ � 1 eigenvalues. In order to reproduce the empir-
ical relation given in (13), we restore physical units in
Euclidean time according to (21) in order to obtain

Z1 = 2NS�e
�S

(1)

||��(X,T )||
s

(2⇡)NSN⌧�1

Q0
i
�(1)
i

. (25)

If the inverse temperature � is substantially larger than
the width of the instanton, the norm is independent of
� and we reproduce the desired, empirically-determined
scaling in (13).
The absence of the zero mode in the product over

eigenvalues in the denominator in Eq.(25) can be for-
mally expressed as follows

detH(1)
? = det

⇣
H(1) + P(1)

⌘
=

NsN⌧�1Y

i=1

�(1)
i

, (26)

where detH(1)
? corresponds to the result of the Gaus-

sian integral over all directions around the one-instanton
saddle point excluding the zero mode, and P(1) is the
projection operator on to the zero mode direction in con-
figuration space.
Finally, for the instanton structure of the partition

function (for which the N -instanton saddle is dominant
in Z), we only need their ratio with respect to the part of
the partition function corresponding to the vacuum sad-
dle ZN/Z0. For the 1-instanton saddle, this means that
what we really need to compute is the following expres-
sion

Z1

Z0
= 2NSL

(1)e�S̃
(1)

 
2⇡

detH(1)
?

detH(0)

!�1/2

, (27)

where S̃(i) = S(i) � Svac.. In this expression, L(1) is
�⌧ dependent and thus the Gaussian fluctuations in
the perpendicular directions must be taken into account
to achieve the �⌧ -independent results in the continuum
limit. In this case, the �⌧ -dependencies in L(1) and in



Many-instanton configurations
1) Variation of action depending on relative position of the instantons 
2) Variation of the determinant of Hessian  
3) Variation of the volume element along the directions defined by zero modes 

(obtained by triangulation inside multi-dimensional orbits) 
Interaction of instantons: 

various factors
1) change of action 
2) change of Hessian  
3) change of volume element 

Interaction of instantons: 
various factors

1) change of action 
2) change of Hessian  
3) change of volume element 

True zero mode

Quasi-zero mode

Triangulation of 2D surface

Volume element

⃗n0

⃗nq.0

ℋ⊥⊥
Hessian for perpendicular directions:

det ℋ(1)
⊥ = det (ℋ(1) + 𝒫(1))

𝒫(1) ∼ |∂τϕ( ⃗x, τ)⟩⟨∂τϕ( ⃗x, τ) |

det ℋ(1)
⊥

det ℋ(0)
= det ((ℋ(1) + 𝒫(1)) (ℋ(0))−1)

det ℋ(N)
⊥ ≈ det ℋ(N) +

N

∑
q=1

𝒫(N)
q

𝒫(N )
q ∼ |∂τq

ϕ( ⃗x1 . . . ⃗xN, τ1 . . . τN)⟩⟨∂τq
ϕ( ⃗x1 . . . ⃗xN, τ1 . . . τN) |

det ℋ(N)
⊥

det ℋ(0)
≈ [det ((ℋ(1) + 𝒫(1)) (ℋ(0))−1)]

N
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All N-instanton saddle points with 
Gaussian fluctuations around them. 
No interaction. Two instantons can 
not occupy the same volume in 
2+1D  space-time.

Minimal distance in 
Euclidean time ~ 
instanton width 

Analytical expression for the partition 
function for non-interacting instantons

Minimal distance 
in space ~ lattice 
step

det ℋ(N )
⊥

det ℋ(0)
≈ [det ((ℋ(1) + 𝒫(1)) (ℋ(0))−1)]

N

1 +
Kmax

∑
K=1

1
K!

(βNs − ΔβX) . . . (βNs − (K − 1)ΔβX)22K × e−S1K {[det (ℋ(1)
⊥ (ℋ(0))−1)]

−1/2 L

2πβ }
K

Z
Z0

= «vacuum» partition function: 
integral over vacuum thimble

Kmax =
β

Δβ
Ns

X
f = f0 −

1
ΔβX

ln 1 +
2e−S1ΔβXL

β 2π det (ℋ(1)
⊥ (ℋ(0))−1)

instanton 
number

Equivalence 
of instantons

C o m b i n a t o r i a l f a c t o r s 
including sublattice and 
instanton - anti-instanton 
indexes

Hessians and orbital length, using:
instanton 
action

Δβ
X

If we sum up to completely filled 
lattice (all slots are taken):

Free energy density:



Benchmark: distribution of instantons
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FIG. D.1. The distribution of the number of instantons ob-
tained from classical grand canonical Monte Carlo for instan-
tons. The first two plots (a and b) show the results for the
model which incorporates the full interaction profile (obtained
from the 6 ⇥ 6 and 12 ⇥ 12 lattices), while the last plot (c)
shows the distribution for the case where only a hardcore re-
pulsion between the instantons is taken into account. For all
of these calculations, � = 20. Gaussian fits are also included
(shown with lines of the same colors as the corresponding data
sets).

(X̃
ĩ
, T̃

ĩ
) with uniform distributions and insert them

in the configuration at a random index ĩ = 1...N+1.
The combined total proposal probability TN!N+1

can be written as

TN!N+1 =
1

N + 1

1

�

1

2NS

. (D4)

This expression reflects the uniform distribution of

(a)

(b)

FIG. D.2. (a) The average number of instantons, taken as the
center of the distribution, from the classical grand canonical
Monte Carlo simulations of the instanton gas model, taking
into account only hardcore repulsion. (b) The variance of
the distribution for the number of instantons from the same
simulations. All data are obtained at � = 20. Note the
rescaling of the data points for the 12⇥12 and 18⇥18 lattices.

the index ĩ of the new instanton, and also the uni-
form distributions of the spatial coordinates, Eu-
clidean time coordinate, as well as the instanton-
anti-instanton index. The probability of the inverse
process corresponds to the simple choice of one in-
stanton for deletion. Thus

TN+1!N =
1

N + 1
. (D5)

These expressions are then combined into the
Metropolis probability for the acceptance of the
new configuration with the additional instanton:

P (2)

ĩ
= min

0

@
1

(N+1)!e
�̃��E(2)

ĩ TN+1!N

1
(N)!TN!N+1

; 1

1

A , (D6)

where

�E(2)

ĩ
=

N+1X

j=1;j 6=ĩ

U (2)(X
ĩ
, Xj , Tĩ

� Tj). (D7)

Note, that in this case, unlike the case of Eq. (D2),
we should take into account the changing factorials

Grand canonical classical MC for instanton gas
QMC data 



Broadening of the spectral function on 
smaller lattices: local AFM correlation.

Spectral functions: comparison with QMC 
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FIG. 12. Top plot: Euclidean fermionic propagator at the
Dirac point in momentum space, obtained from the instan-
ton gas model with hardcore repulsion. We compare the data
obtained on 6 ⇥ 6, 12 ⇥ 12 and 18 ⇥ 18 lattices at U = 6.0.
Nt = 256 in all cases. Bottom plot: corresponding spec-
tral functions obtained after the analytical continuation with
stochastic MaxEnt.
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FIG. 1. Spin-spin correlations, 1
3 hŜx0(T ) · Ŝx0+x(T )i, for a

field configuration with one instanton at space time (X,T ).
We consider two values of x0. The left black circle corre-
sponds to x0 = X. The other value of x0 (right black cir-
cle) is far from the instanton. R1 and R2 are two Cartesian
coordinates of the lattice sites, displayed in the units of the
distance between nearest neighbours. These calculations were
performed on a 12⇥12 lattice at interaction strength U = 2.0
(see sections I.1 and I.2 for the notation).

dependent scalar field couples to the local charge de-
gree of freedom. For this choice of Hubbard-Stratonovich
(HS) transformation, SU(2) spin symmetry is present for
all field configurations. Solving the saddle point equa-
tions under the assumption of fields which are constant
in space and time reduces to the paramagnetic mean-
field approximation to the Hubbard model [7] in which
the field vanishes.

We would like to go beyond this trivial solution, and
in particular, provide a map of all saddle points with-
out the restriction to fields which are constant in space
and time. We note that since the action is not necessar-
ily real, one generically has to continue the real scalar
field to the complex plane to achieve this goal. The mo-
tivation to do so is at least twofold. On one hand, the
saddle point structure is necessary to formulate the so-
called Lefschetz thimble decomposition [9, 10] that has
the potential of alleviating the severity of the negative
sign problem [11, 12]. In particular, each thimble is
attached to a saddle point, and the imaginary part of
the action is constant within the thimble. On the other
hand, the very structure of the (complex) saddle points,
can yield valuable approximation schemes that can be
improved at will. Here we will consider the latter but
concentrate on cases where the action is real, as realized
at the particle-hole symmetric point. In this case, the
complexification of the field is not required.

Finding saddle points is a daunting task. Here we use
auxiliary field quantum Monte Carlo simulations to sam-
ple the fields, and for each independent configuration,
stop the Monte Carlo sampling and integrate the steepest
descent di↵erential equation so as to flow to the saddle
point. This provides a complete map. Remarkably, as
was shown in [13], for the honeycomb lattice at any cou-
pling and for the square lattice at strong coupling, the
saddle point structure is quite regular. All saddles can

(a)

(b)

(c)

FIG. 2. (a) Spectral functions in momentum space using the
ALF [8] implementation of the auxiliary field QMC. (b) The
same spectral functions obtained with instanton gas model.
(c) The share of the lower peak in the overall spectral weight
along the same profile in momentum space. Calculations were
done for 12 ⇥ 12 lattice with N⌧ = 256 and � = 20 (see
sections I.1 and I.2 for the notation). The interaction strength
is equal to U = 6.0, which is equal to the bandwidth.

be understood in terms of an elementary configuration,
an instanton, in which the fields di↵ers from zero only in
a small space time region. Physically, it corresponds to
the formation of a local moment at a given space-time
point and concomitant short ranged anti-ferromagnetic
fluctuations around this point (see Fig. 1). Under the
assumption of spatial locality, and as shown in Appendix
B, the instanton is characterized by a topological winding
number

This instanton approach provides an interesting link
between the structure of the path integral for the Hub-
bard model and long-established methods in quantum
chromodynamics (QCD). Instantons were introduced al-
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FIG. 17. Spectral functions in momentum space for full QMC
with Ising fields (top plot) and for the instanton gas model
(middle plot). Bottom plot shows the share of the main peak
in the overall spectral weight along the same profile in mo-
mentum space. Calculations were done for 12 ⇥ 12 lattice
with Nt = 256 and � = 20. Interaction strength is equal to
U = 6.0.
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FIG. 17. Spectral functions in momentum space for full QMC
with Ising fields (top plot) and for the instanton gas model
(middle plot). Bottom plot shows the share of the main peak
in the overall spectral weight along the same profile in mo-
mentum space. Calculations were done for 12 ⇥ 12 lattice
with Nt = 256 and � = 20. Interaction strength is equal to
U = 6.0.

Spectral functions and relative spectral weight of the 
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Full integral over one 
dominant thimble: algorithms
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Check that we are still within the same thimble via GF after 
HMC update:
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lar to Powell’s method to search for local minima. The
algorithm is illustrated schematically in Fig. 13(a), for a
single complex field. The minimization procedure con-
sists of alternating GF steps for constant imaginary and
real parts of the field. The even iterations consist of

GF in the downward direction with fixed Re�j = �(R)
j

,

where �j ⌘ �(R)
j

+ i�(I)
j

represents both complex auxil-
iary fields. The flow stops when it reaches the local min-
imum. The odd iterations consist of upward GF with

fixed Im�j = �(I)
j

and terminate when a local maxi-
mum or zero of determinant has been reached, where
ReS ! 1. The convergence can be controlled by mon-

itoring the quantity, ⌃D,Re/Im ⌘
P

i
|@ReS/@�(R/I)

i
|
2

(with the sum running over all sites in the spatial and
temporal directions) after each iteration, with ⌃D,Re

reaching the level of numerical precision (typically 10�10)
during even iterations and ⌃D,Im during odd iterations
(assuming the flow did not collide with a zero of deter-
minant). Some examples are shown in Fig. 13(b) and
Fig. 13(c). In the former, one can see two examples of
the iterations on a 2⇥2 lattice. Here we see that one con-
verges into the vacuum saddle, which is uniformly shifted
into the complex plane (Re�x,⌧ = Re�x,⌧ = Im�x,⌧ = 0,
Im�x,⌧ = �0), while the other converges into a non-trivial
saddle, which is non-uniform both in space and Euclidean
time. The latter figure demonstrates an example for a
6⇥ 6 lattice, where the iterations collided with a zero of
the determinant on the way, but nevertheless converged
afterwards.

Away from half-filling, the initial configurations were
generated using a phase quenched HMC, using the algo-
rithms already described in [40]. Thus, only the absolute
value of ln det(Mel.Mh.) was taken into account during
the Monte Carlo procedure. Usually, the initial config-
urations are generated along some contour in CN , uni-
formly shifted from RN , in order to approach the thim-
ble. This is not surprising as we have found that this
constant shift into complex space applies to the vacuum
saddle at µ 6= 0. The procedure of using a constant
shift was performed at ↵ = 0.8 and ↵ = 0.9, where the
charge-coupled field dominates. If ↵ = 0, the thimbles
and saddles again lie within RN , since both fermionic
determinants are real. However, as discussed previously,
this property of the fermionic determinants leads to a
loss of ergodicity for HMC. Thus, in order to explore
the case when the spin-coupled field dominates, we use
small ↵ = 10�4 and generate configurations without a
shift into the complex plane. Even such a small, nonzero
value of ↵ is enough to restore ergodicity, as one can see
in the inset in Fig. 14. This inset shows the history of
argS during one trajectory in HMC update. If ↵ = 0,
all thimbles have cos argS = ±1 again due to the fact
that det(Mel.Mh.) 2 R. Thimbles with di↵erent signs
are separated by zeros of the determinants, since they
are branch points of the logarithm. Here we have a small
but nonzero ↵, and thus the cos argS only approaches
±1. A sharp transition is observed in the inset in Fig. 14

(a)

(b)

FIG. 16. The distribution of the action of saddle point con-
figurations at µ =  for ↵ = 0.9 (a); and ↵ = 0.8 (b). Results
are shown for a 6 ⇥ 6 lattice with N⌧ = 256 and � = 20.0,
U = 3.8. As the action is complex away from half-filling, the
histogram is plotted simultaneously both for real and imagi-
nary parts of the action. The set of saddle points is similar
to the results at half-filling at the same ↵ (see Fig. 8). Plot
(b) shows that again, only one (shifted trivial vacuum) saddle
point can be found for ↵ = 0.8.

which shows us that the algorithm still can tunnel be-
tween di↵erent thimbles. This tunneling was, in fact,
quite frequent and was observed in more than half of the
Monte Carlo updates. This is a further confirmation that
the HMC is ergodic.

Another concern regarding our GF procedure is the
question of convergence of the alternating iterations. Un-
fortunately, the procedure we have used does not con-
verge for an arbitrary saddle. The criterion for the con-
vergence of the procedure can be derived from the fact

8

FIG. 3: Thimbles and anti-thimbles for one-site Hubbard model in the Gaussian representation at various values of chemical
potential.The action is written in (34), U� = 15.0. (a) Half filling (µ = 0). The real axis is divided by “zeros” of fermionic
determinant into infinite number of thimbles. Corresponding anti-thimbles end up at infinity Im z ! ±1. (b) �µ = 5.0. The
number of relevant thimbles is still infinite but all relevant saddles are shifted in the complex plane from the real axis. (c)
�µ = 15.0. There is still infinite number of relevant saddles, but the Stokes phenomenon is very close to appearance. (d)
�µ = 20.0. The Stokes phenomenon is occurred. Only one relevant thimble remained.

integral over the thimble is substituted by the value of
the exponent at the corresponding saddle point e�S(z�).
The zeroth saddle at x = 0 is of course dominant but one
should take into account ⇡ 5 thimbles to reach reasonable
precision at intermediate chemical potential around the
transition point. This hierarchy is illustrated in the figure
4 using the approximations described in eq. (31-33). This
is the typical plot which we will use for the estimation of
the relative importance of thimbles in various situations.
The lower plot is the histogram showing the number of
thimbles which have their values of weight W� (see eq.
(32)) within the given interval with respect to the thim-
ble with the largest weight W0. The upper plot is the
“weighted” histogram. It means that the height of each
bar increases by the relative weight exp (�(W� �W0))
of the thimble with respect to the vacuum one if W� of
the thimble belongs to the given interval. The weighted
histogram (fig. 4a) clearly shows that the “vacuum” sad-
dle at zero x still dominates. The weight of all further
thimbles (there are two of them contributing to each bar,

these thimbles are symmetrical with respect to x = 0)
rapidly decreases with increased distance from the vac-
uum x = 0.

The main question is how this situation scales when the
overall lattice size N = NsNt increases. A full derivation
of the exact scaling law for the number of relevant thim-
bles is probably unfeasible in the general case. Thus, our
task is to find, empirically, whether the number of impor-
tant saddles increases with increasing lattice size. We will
study the region µ < U , since the chemical potential is
usually smaller than the typical scale of the on-site inter-
action in reality. For instance, in graphene, new physical
phenomena emerge if the chemical potential crosses the
van Hove singularity [41] which is of the order of the hop-
ping (2.7 eV), while on-site interaction is of the order of
10 eV [42]. We will consider the two-site Hubbard model
on the lattice with Nt = 1, 2, 3 and the four-site Hubbard
model with Nt = 1. Action is constructed according to
(14) and (15) with the single-particle Hamiltonian de-
fined in (17) and (18) and ↵ = 1. The general form of
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Jacobian

S ≈ S0 +
1
2 ∑

i,j

ℋijΔziΔzj

Re S ≈ Re S0 +
1
2 ∑

i

λi((Δx̃)2 − (Δỹ)2)

zx,τ = z(0)
x,τ (T0) +

N−1

∑
j=1

(Re Vj
x,τ + i Im Vj

x,τ)Tj

W = ∫ dT0

N−1

∏
j=1

dTje−S(z(0)
x,τ (T0))e− 1

2 ∑N−1
j=1 λjT2

j
∂zx,τ

∂Tj

∂zx,τ

∂Tj
=

∂z(0)
1,1

∂T0
V1

1,1 . . . VN−1
1,1

⋮ ⋮ ⋮ ⋮
∂z(0)

Ns,Nτ

∂T0
V1

Ns,Nτ
. . . VN−1

Ns,Nτ

Double number of zero modes

Gaussian approximation for thimble weight:



FT[ϕx,τ] |T=C[ϕx,τ]
= 0 FT[ϕx,τ] = ∑

x,τ

sin
2π
β

(Δτt − T )Re ϕx,τ

FC[ϕx,τ][ϕx,τ + W(1)
x,τ C1 + W(2)

x,τ C2] = 0

W(i)
x,τ, i = 1,2 V(i)

x,τ, i = 1...N − 1

C1FC[ϕx,τ][W
(1)
x,τ ] + C2FC[ϕx,τ][W

(2)
x,τ ] = 0

Nx,τMx,τ

M̃x,τ = Mx,τcosθ + Nx,τsinθ

(M̃x,τ ⋅
Δϕx,τ

Δτ ) Δϕx,τ

Δτ
=

ϕx,τ+1 − ϕx,τ−1

Δ2τ

Finding directions for 1-instanton saddle
Linear functional to fix the center of the configuration:
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Zero modes: Other modes:

Combination of zero modes keeping the center constant:

- shifts the center - does not shift the center

Final optimization:

Maximization:



FT[ϕx,τ] = 0 GC[ϕx,τ]
D [ϕx,τ] = 0 GT

D = ∑
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Re ϕx,τKT,D
x,τ
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Δ2τ
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ϕ(1)
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Δ2τ

FC[ϕx,τ][ϕx,τ + ∑i W (i)
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x,τ M(2,1)
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M̃(1,1)
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x,τ cosθ1 + (N(1)
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x,τ cos ξ1) sinθ1(M̃(1,1)
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x,τ ⋅
ϕD+1

x,τ − ϕD−1
x,τ

2Δτ ) ⊥ M̃(1,1)
x,τ

N2
x,τ M2

x,τ

Finding directions for 2-instanton saddle
4 zero modes:
2 functionals, one fixes the center, another the time distance between instantons:

2-dim subspace where center and distance change and 2-dim subspace where they are 
constant:

One mode shifts center, another shifts distance:

Optimization I:

Optimization II:

+condition:



Ni
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M(1,k)
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(M̃(1,1)
x,τ ⋅ D(1)) M̃(1,1)
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x,τ cosθ1 + 𝒩1sinθ1

(M̃(2,1)
x,τ ⋅ D(2)) M̃(2,1)

x,τ = M(2,1)
x,τ cosθ2 + 𝒩2sinθ2 𝒩2 ⊥ M̃(1,1)

x,τ

Finding directions in general case

Found from:
Ninst collective coordinates

Zero mode changing the 1st collective coordinate:

Zero mode changing the 2nd collective coordinate:

…and so on
 Optimizations:

…and so on
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FIG. 12: Examples of configurations on the lattice with Ns =
4, Nt = 2, with only real exponents in the action. The scheme
shows three configurations, two of them have positive weight
((a) and (c)) and one has negative weight (b). Both time slices
are shown in each case. Circles correspond to the Hubbard
field � ⇡ �U� and crosses correspond to � ⇡ U�, � = �/2.

lattices and two highest saddles with Hubbard fields uni-
form in entire lattice. In between of them we have a set
of saddles where Hubbard fields fluctuate between sub-
lattices. Their weight is very close to each other, only
small splitting appears for Nt = 4. Thus their overall
number can be estimated as 2Nt � 2, taking into account
all possible reflections and translations. The competition
arises between exponentially increased amount of these
thimbles and their exponentially decreasing weight (this
fact can be also noticed from the figure 9). It means that
in continuous limit Nt ! 1 these non-uniform saddles
can still make significant contribution in the sum (20).

The case with non-zero chemical potential is shown
in the figure 11. Unlike the previous study for complex
exponents, where we could not directly find relevant com-
plex saddles thus we just tracked the evolution of former
real saddles, here we can find all relevant saddles exactly,
because all of them are lying within RN even for µ 6= 0.
The figure 11 shows the situation for µ� = 3. It shows
three di↵erent cases: 1) Ns = 2, Nt = 1; 2) Ns = 2,
Nt = 2; 3) Ns = 4, Nt = 1. Thus we can trace both
trends: increasing Nt and increasing Ns. Comparison
with the figures 9 and 10 shows that there are only small
changes in the distribution of relevant thimbles.

Importantly, all relevant saddles still have positive
weight. This is not surprising taking into account that
the absence of the sign problem for the two-site model
with Hamiltonian (17) can be proven analytically even
in the continuous limit Nt ! 1. It means that the
sign problem for the path integral representation with
purely real exponents appears only if we increase Nt

and Ns further. In order to give a short overview how
the sign problem looks like in this case, we studied the
lattice with Ns = 4 and Nt = 2. Indeed, the saddle
points with negative sign appear in this case. There
is, of course, very large amount of various non-uniform
saddles on this lattice, so we just give some examples.
The two saddle points with auxiliary fields being uni-

FIG. 13: The action for the one-site Hubbard model in
the Gaussian representation: (a) ↵ = 0.95, (b) ↵ = 0.8, (c)
↵ = 0.5. U� = 10.0, the action is written according to (14),
(16). Horizontal axis corresponds to the field � and vertical
axis corresponds to the field �. Relevant saddle points looks
like local minima on the current plots which show only the
behaviour of action within RN . All “negative” directions for
those saddle points are pointing out in complex space.

form across sublattices are again the lowest ones and they
still have positive weight. However, the non-uniform sad-
dles with smaller weight can change the sign. Typically,
those saddle points which are non-uniform only in space
but uniform in the Euclidean time direction have positive
weight. On the other hand, the saddle points, which are
non-uniform both in space and time, can have both pos-
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FIG. 25. (a) Comparison of the sign problem in conventional
HMC with real Hubbard fields and in HMC as a function of
µ. (b) Comparison of the sign problem in BSS-QMC and in
HMC as a function of temperature at µ = . Results are
shown for a 2 ⇥ 2 lattice with U = 2.0, N⌧ = 256. ↵ = 0.8
for all HMC points.

hK̂i hŜ(1)
x Ŝ(1)

y i
ED 19.5781 -0.14624

BSS-QMC 19.587±0.002 -0.1466±0.0008

HMC, ↵ = 1.0 19.65±0.31 -0.112±0.0069

HMC, ↵ = 0.8 19.52±0.17 -0.142±0.0062

TABLE I. Comparison of observables for exact diagonaliza-
tion, BSS-QMC (ALF) and two variants of HMC with gra-
dient flow for a 2 ⇥ 2 lattice with N⌧ = 256, U = 2.0 and
µ = .

typically consists of O(102) steps. Thus, the calculation
of the Jacobian plays only a subdominant role in com-
putational e↵orts. The overall scaling of the method is
C1ÑMDÑGFN4

s
N2

⌧
+C2N3

s
N3

⌧
, where the first term cor-

responds to the HMC procedure used to generate field
configurations and the second term accounts for the cal-
culation of det J at the end of the trajectory. Here ÑMD

refers to the number of steps in a MD trajectory which
is typically O(102), ÑGF refers to the number of steps in
the integrator for GF equations which is typically O(101),
and C1 and C2 denote volume-independent constants. In
what follows, we will refer to this algorithm as HMC-
GF. Several examples of configurations of the �̃ fields,
generated with this algorithm, are show in Fig. 24.

The Jacobian is left for the final reweighting, and thus
the observables are computed using the following expres-
sion

hOi =
hOei Im(�S+ln det J)+Re(ln det J)

i

hei Im(�S+ln det J)+Re(ln det J)i
, (36)

where the residual fluctuations of ImS are also taken into
account. The brackets hi denote the averaging over con-
figurations generated with HMC-GF. We also take into
account symmetries of the action in order to further im-
prove the ergodicity of our set of field configurations, gen-
erated with HMC-GF

S(�x,⌧ ,�x,⌧ ) = S̄(��̄x,⌧ ,��̄x,⌧ ),

S(�x,⌧ ,�x,⌧ ) = S(�x,⌧ ,��x,⌧ ). (37)

The following metrics are used to estimate the severity
of the sign problem: hcos(ImS)i and hcos(Im ln det J)i

hcos ImSi hcos arg Ji h⌃Gi
BSS-QMC 0.2363±0.0032 0.2363±0.0032

HMC,↵=1.0 0.9627±0.0038 0.427±0.014 0.351±0.015

HMC,↵=0.8 0.797±0.022 0.915±0.008 0.644±0.028

TABLE II. Comparison of the sign problem for BSS-QMC
(ALF) and two variants of HMC with gradient flow for a 2⇥2
lattice with N⌧ = 256, U = 2.0 and µ = .

for configurations and the Jacobian respectively, and the
joint sign h⌃Gi = hcos(Im(�S + ln det J))i. The first
metric characterizes the part of the residual sign prob-
lem which stems from the fact that the sequence of shifts
(35) does not follow thimble exactly. The second metric
characterizes the part of the residual sign problem which
stems from the fluctuations of complex measure during
integration over curved manifold in complex space. The
last metric characterizes the entire residual sign prob-
lem. We also estimate the strength of the fluctuations
of the Jacobian by computing DJ , the dispersion of
Re(ln det J).
The following choice is made for the parameters of the

simulations: 2 ⇥ 2 lattice (Ns = 8), N⌧ = 256, U = 2,
µ = , � = 20. This lattice is small enough to make
a comparison with finite-temperature ED possible, but
large enough to host non-trivial saddle points at large
↵ (see Fig. 18(c)). Their form is only slightly di↵erent
from the ones appearing at larger lattice sizes. These
saddles also experience decay along the Re� direction
at ↵ ⇡ 0.8, similar to the 6 ⇥ 6 and 12 ⇥ 12 lattices
studied above. Thus we can say that such a small lat-
tice can in fact model the properties of the saddle points
even at thermodynamic limit. On the other hand, we
find that N⌧ = 256 is large enough to probe both the
low-temperature regime as well as the continuum limit
in Euclidean time simultaneously. We further note that
the state-of-the-art QMC algorithm for condensed mat-
ter systems, BSS-QMC, taken from the ALF package [51],
experiences exponential decay of the average sign at these
parameters, even in the optimal regime where the dis-
crete auxiliary field is coupled to spin. It is thus appar-
ent that the sign problem is already strong in this regime.
We have also probed two di↵erent values of ↵: ↵ = 1.0,
so that only the charge-coupled field �x,⌧ participates in
the integral, and ↵ = 0.8 in order to probe the “opti-
mal regime”, where only the vacuum saddle point was
detected.
Our results for the computed observables are displayed

in the Tab. I while the study of the sign problem is sum-
marized in Tab. II. We compute the kinetic energy, h K̂ i,
and the nearest-neighbor correlation function for the first

component of spin h Ŝ(1)
x Ŝ(1)

y i. Results at ↵ = 1.0 sub-
stantially deviate from ED, while at ↵ = 0.8 the results of
HMC calculation are in agreement with ED. This seems
to imply that at ↵ = 1.0 ergodicity issues indeed ap-
pear as there are several relevant thimbles and thus GF
collides with zeros of the determinant. Unfortunately,
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Resummation

Observable:

- from instanton gas
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FIG. 17. Spectral functions in momentum space for full QMC
with Ising fields (top plot) and for the instanton gas model
(middle plot). Bottom plot shows the share of the main peak
in the overall spectral weight along the same profile in mo-
mentum space. Calculations were done for 12 ⇥ 12 lattice
with Nt = 256 and � = 20. Interaction strength is equal to
U = 6.0.
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Resummation - charge density away of half-
filling
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Taken from saddle point field configurations

Resummation - non-local correlation
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Further perspectives
1) better approximation for the thimble integral

2) Square lattice Hubbard model
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Square latt ice Hubbard model 
features not only localized instantons 
but also domain walls as saddles 
points

3) Connections to CPQMC

|E0⟩ ≈ ∑
X

∫
k++k−

∏
i=1

dTi W(X, T ) ∏
τ

e−Ĥtb.Δτei∑x z(X,T) ̂qx |Ω⟩

Weights and profiles taken from instanton gas model




