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Convex geometry in quantum physics

⟨Ψ|Ψ⟩ ≥ 0

We’ll work with operators (and expectations) instead of states:

⟨O†O⟩ ≥ 0

This is a convex constraint.
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A historical note

A physics schoolbook circa 1880 supposedly contained a problem:

“Why can not a man lift himself by pulling up on his bootstraps?”

Prior to QCD: constrain strong interactions by

unitarity and various symmetries.

No Lagrangian needed!

The numerical “conformal bootstrap” finally succeeeded at this

(general) program last decade, via convex optimization.

Since then, we’ve started calling all convex optimization-based

numerical methods in physics “bootstrap”.

(See also: “booting” a computer, and the statistical bootstrap.)
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Part I

Convex methods for real-time dynamics



The space of density matrices

Tr ρ = 1 and ρ ⪰ 0

The density matrix is positive semi-definite: v †ρv ≥ 0 for all v .

Expectation values are projections.

Mij = ⟨O†
i Oj⟩ ⪰ 0

The space of ρ is convex. The space of M is a projection of a

convex space (also convex).

What is the minimum value of ⟨O⟩ consistent with ρ ⪰ 0?

What is the minimum value of ⟨O⟩ consistent with M ⪰ 0?
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Projections of density matrices

{x̂ , p̂} M =

(
⟨x̂2⟩ ⟨x̂ p̂⟩

⟨x̂ p̂⟩ − i ⟨p̂2⟩

)
⪰ 0

{x̂ , p̂, x̂2} M =

 ⟨x̂2⟩ ⟨x̂ p̂⟩ ⟨x̂2⟩
⟨x̂ p̂⟩ − i ⟨p̂2⟩ ⟨p̂x̂2⟩
⟨x̂3⟩ ⟨x̂2p̂⟩ ⟨x̂4⟩

 ⪰ 0

“So what?” This implies the uncertainty principle:

⟨x̂2⟩⟨p̂2⟩ ≥ 1

4

and therefore a lower bound on ⟨H⟩ of the harmonic oscillator.
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Convex optimization: interior-point methods

Intuitively, convex functions (over convex spaces) are easy to

minimize. How do we actually do this?

minimize f (x) subject to g(x) ≥ 0

1. Find any strictly feasible point (g(x) > 0)

2. Write down a barrier function :

ϕ(x) = − log g(x)

3. Set t = 1 and minimize

ft(x) = f (x) + t−1g(x)

4. Assign t → 2t and repeat until convergence

First (as far as I know) method like this described in [Dikin 1967].

Good introductory text is [Boyd-Vandenberghe 2004].
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The primal approach

Describe a convex space:

• One point in this space is the “physical” point.

• The observable of interest is a convex (linear counts) function

of this space.

• (Ideally) as more constraints are included, the space shrinks to

the physical point.

Use IPM or similar to bound the observable.
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The space of time-dependent density matrices

ρ(t) ⪰ 0 (∀t)

As ever, we project to a finite set of operators:

M(t) ⪰ 0 (∀t)

Heisenberg equations of motion:

d

dt
⟨O⟩ = i⟨[H,O]⟩

provide linear constraints on M:

d

dt
TrCM(t) = TrDM(t)

This is an infinite-dimensional space.
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Spectral reconstruction problems

C (E)(τ) =

∫ ∞

0
dω ρ(ω)

coshω
(
β
2 − τ

)
sinh βω

2

Given a finite set of measurements of the Euclidean correlator

Ci = C (E)(τi ), with (correlated) Gaussian errors Σij , estimate the

smeared spectral density:

ρ̃σ(ω0) ≡
∫ ∞

0
dω ρ(ω)e−

(ω−ω0)
2

σ2

Or, the (smeared) real-time correlator:

C̃σ(t) ≡
∫

dt ′e−
(t−t′)2

σ2

∫
dω ρ(ω) sinωt ′

There are some questions we do not ask. Neither ρ(ω) nor C (t)

can be meaningfully constrained.
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The space of spectral density functions

The spectral density functions ρ(ω) are constrained by ρ(ω) ≥ 0.

The lattice data provides further constraints. If there are no errors,

these are linear constraints (certain integrals of ρ(ω) are known).

With errors, these are convex inequalities:

v [ρ]TΣv [ρ] ≤ Fmax where v [ρ] ≡ Ci −
∫
ρ(ω)Ki (ω)

(Fmax must be chosen to define some confidence interval.)

The space {ρ(ω)}, consistent with positivity and the lattice

data, is convex.

Now consider some integral:

C[ρ] =
∫

K(ω)ρ(ω)

It’s a linear function of a convex (infinite-dimensional) space.
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Lagrangians

minimize f (x) subject to g(x) ≥ 0

We define a Lagrange function (or “Lagrangian”)

L(x , λ) = f (x)− λg(x)

Now notice that the optimal value p∗ is given by

p∗ = min
x

max
λ≥0

L(x , λ)

In general, we introduce one Lagrange multiplier (like λ) for every

inequality.

L[ρ(ω), λ(ω), µ] =

∫
ρ(ω) (K(ω)− λ(ω))−µ

(
Fmax − vT [ρ]Σv [ρ]

)
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The dual problem

p∗ = min
x

max
λ≥0

L(x , λ)

We can define a dual problem by swapping the order of

optimizations

d∗ = max
λ≥0

min
x

L(x , λ)

Under “reasonable” conditions, we have p∗ = d∗; and we always

have d∗ ≤ p∗.

The dual is generally more “pleasant” to work with.

Roughly speaking, dual degrees of freedom “come from” primal

constraints. In the spectral case, we get one Lagrange multiplier

for each Euclidean data point.
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Computing the Lagrange dual

For simplicity, restrict to the case with no statistical errors.

L[ρ(ω), λ(ω)] =

∫
ρ(ω) (K(ω)− λ(ω))

The primal optimum: p∗ = minρ maxλ≥0 L[ρ, λ].

Here the minimization over ρ is subject to
∫
ρKi = Ci .

Swapping the min/max order, the Lagrange dual function is defined:

g(λ) = min
ρ

∫
ρ(ω) (K(ω)− λ(ω))

The minimization is unbounded below unless the linear constraint tells us

the value. In other words, the only permitted λ are of the form

λ(ω) = K(ω) + ℓiKi (ω).

We can now evaluate g(ℓ) = ℓiCi , defining the dual optimization problem

maximize ℓiCi subject to K(ω)− ℓiKi (ω) ≥ 0 (for all ω)
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Enforcing an infinite number of constraints

With statistical errors, the dual problem reads:

maximize ℓTC − Fmax

4µ
ℓTM−1ℓ− µ

subject to K(ω)−
∑
i

ℓiKi (ω) ≥ 0

and µ ≥ 0

Recall the interior-point method at the beginning of this talk:

We need only write a barrier function!

b[λ, µ] = −
∫ ∞

0
dω log λ− logµ

Done.
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Linear response in ϕ4 theory (2+1 dimensions)

Computing Im ⟨ϕ(t)ϕ(0)⟩ with L =
1

2
(∂ϕ)2 +

m2

2
ϕ2 +

λ

4
ϕ4

Calculation done on a 162 × 80 lattice, with m2 = 0 and λ = 10−2.

A total of ∼ 2× 105 (imperfectly decorrelated) samples used.
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Nonequilibrium dynamics: the dual problem

Primal:



minimize TrOM(T )

subject to M(t) ⪰ 0

TrA(i)M(t) = 0

TrB(j)M(0) = bj

Tr

(
D(k) − C (k) d

dt

)
M(t) = 0.

Lagrangian: L[M,Λ] = TrOM(T )−
∫ T

0
Λ(t)M(t) dt.

Dual:


maximize λ

(k)
d (0)TrC (k)M0

subject to λ
(k)
d (T )C (k) = O

λ
(i)
a (t)A(i) +

(
D(k) + C (k) d

dt

)
λ
(k)
d ⪰ 0.
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Discretizing the dual problem

Dual:


maximize λ

(k)
d (0)TrC (k)M0

subject to λ
(k)
d (T )C (k) = O

λ
(i)
a (t)A(i) +

(
D(k) + C (k) d

dt

)
λ
(k)
d ⪰ 0.

Optimization over λ•(t) is still infinite-dimensional. But we can

restrict the search to a finite-dimensional subspace.

Let λ•(t) be a quadratic spline with K knots.

maximize λ
(k)
d (0)TrC (k)M0

subject to Λ(t, y) ⪰ 0 (for all t).
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Nonequilibrium dynamics: one anharmonic oscillator

Ĥ =
p̂2

2
+

x̂2

2
+

x̂4

4
|ψ(0)⟩ ∝ |0⟩+ 1

2
|1⟩+ 1

4
|2⟩

N K Algebraic Derivatives Parameters

4 0 7 7 35

4 3 7 7 77

9 3 56 21 441
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Nonequilibrium dynamics: coupled anharmonic oscillators

Ĥ0 =
p̂2 + q̂2

2
+

x̂2 + ŷ2

2
+

(x̂ − ŷ)2

2
Ĥ = Ĥ0 +

1

8
(x̂4 + ŷ4)

N K Algebraic Derivatives Parameters

8 0 34 18 138

8 3 34 18 294

26 0 521 103 1769
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Part II

Overview and philosophy



The conformal bootstrap (briefly and crudely)

Positivity in radial quantization (inequalities), combined with

crossing symmetry, defines the convex space.

See [Kos+ 1603.04436], or [Poland-Rychkov-Vichi 1805.04405] for a review.
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Finite fermion density

⟨O†O⟩ ≥ 0

This can be used to obtain lower bounds on ⟨H⟩. The dual

problem is termed “noncommutative sum-of-squares”:

H =
∑
i

λiA
†
i Ai + C =⇒ ⟨H⟩ ≥ C

The first numerical QM bootstrap that I know of

is [Barthel-Hübener 2012], targeting the Hubbard model. See

also [SL 2211.08874].
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Constraining the ground state

⟨O†[H,O]⟩ ≥ 0

This statement uniquely fixes the ground state.

I can’t find numerical works applying this sort of bound. (Most

existing ground-state bounds are lower bounds only, using

⟨O†O⟩ ≥ 0.)

Stay tuned!

There is also a thermal generalization: “energy-entropy balance

inequalities”.
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Bootstrapping the path integral

Without a sign problem, we have statements of the form∫
Dϕ e−S |f (ϕ)|2 ≥ 0

With a sign problem, we still have reflection-positivity.1

Implemented in the context of Yang-Mills [Kazakov-Zheng

2203.11360] and the Ising model [Cho+ 2206.12538].

1Terms and conditions apply! Enquire within.
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Philosophy: Maintaining convexity

Here’s a constraint true only for eigenstates [Berenstein-Hulsey

2209.14332]:

⟨HO⟩ = E ⟨O⟩

This constraint is not convex when E is unknown!

This is a minor problem with only one unknown (you can scan over

all possible values of E ). Adding unknowns to the Hamiltonian

causes major problems.

Maintaining convexity of constraints is what lets these methods

scale.
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Philosophy: The space of proofs

A = B is two statements: A ≤ B ∧ A ≥ B.

It should be easier to find pairs of statements if we separate B±:

A ≤ B+ ∧ A ≥ B−

A dual-feasible point is a proof of a bound.

There is therefore a particular space of proofs which is convex.

The ‘strength’ of the proof is a convex function on this space.

What types of proofs are missing from this space?
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Some open problems

Quantum-mechanical bootstrap:

• How to bootstrap “non-analytic” interactions? Concrete

example: I give you a tabulation of V (x), and ask for the

ground state of Ĥ = p̂2 + V (x̂). Nota bene: Switching to

second quantization is cheating.

Spectral inversion:

• Demonstrate bounds on the off-diagonal spectral function

(from correlators ⟨O1(t)O2(0)⟩).
• How much does incorporating Schwinger-Dyson relations

tighten this bound?
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