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Stochastic process for  x:

Gaussian noise

Averages are calculated along the trajectories:

⟨O ⟩=limT→∞
1
T∫0

T

O(x (τ))d τ=∫e−S (x )O(x)dx

∫e−S (x)dx

Langevin Equation (aka. stochatic quantisation)

⟨η(τ)⟩=0

Given an action S (x)

⟨η(τ)η(τ ' )⟩=δ(τ−τ ')
d x
d

=−∂S
∂ x

 

Random walk in configuration space

Numerically,
  results are extrapolated to Δ τ→0



Stochastic process for  x:

d x
d

=−
∂S
∂ x

 

Gaussian noise

Analytically continued observables are calculated along the trajectories:

⟨O ⟩=limT→∞
1
T∫0

T

O(x (τ)+iy (τ))d τ

Complex Langevin Equation

⟨η(τ)⟩=0
Given an action S (x)

⟨η(τ)η(τ ' )⟩=δ(τ−τ ')

The field is complexified

real scalar            complex scalar

link variables: SU(N)              SL(N,C)
compact          non-compact

det (U )=1, U +≠ U−1

d x
d

=−
∂S
∂ x

 

1
Z∫ P comp( x )O ( x )dx= 1

Z∫ P real( x , y )O ( x+iy)dx dy    ?

〈 x2〉real  →  〈 x2− y2〉complexified



For nontrivial models CLE may or may not give a correct answer

Diagnostic observables: boundary terms 
                                       certain non-holomorphic observables, histograms 

S (φ)=iβcosφ+iφ

Do we know if it’s correct?

What can we do if it’s incorrect?
Change variables
Use a kernel 
Use a “regularization” (see below)  

[See talk of Michael Mandl]
Reasons for incorrect results:  slowly decaying distributions (Boundary terms)
                                                different cycles contributing
                                                non-holomorphic actions

[See talk of Enno Carstensen]



Can we apply Complex Langevin to QCD?

Yes, but there are some hurdles along the way:

1. respect group manifold
      

2. complexified gauge group is non-compact - gauge cooling
        

3. rough lattices – gauge cooling inefficient

4. Include light fermions 

5. low beta (low temperature?) - system more instable 
        Dynamical stabilization



1st problem: respect group manifold

d x
d

=−∂S
∂ x

 

In lattice gauge theory, we have link variables: U γ (x)∈SU(N )

First idea: use a map

U γ (x)=U (ϕi ,θ j)     0≤ϕi<2π ,  0≤θ j<π ,   1≤i≤5 ,  1≤ j≤3  for SU (3)

∫DU e−S(U )   →   ∫d ϕidθ jH (ϕi ,θ j)e
−S(ϕi ,θ j)

¿

→  Langevin eq. for ϕi ,θ j

Con:      Too cumbersome (already for real Langevin)

             Map has singular points

Pro(?):   potentially different complexifications 

K i=−∂i S+∂i lnH (ϕ i ,θ j)



1st problem: respect group manifold

d x
d

=−∂S
∂ x

 

In lattice gauge theory, we have link variables: U γ (x)∈SU(N )

Better idea: use the map                                 locally, only for the update eq.U γ (x)=e
iλaαaU 0

update eq.:   U (τ+Δ τ)=exp [i λa(K aΔ τ+ηa√2Δ τ) ]U (τ)

Drift term:   K a=DaS (U )=( ∂
∂αa

S(ei λaαaU ))αa=0
   Left derivative

Complexification:  Ka∈ℂ U∈SU (N )   →   U∈SL(3 ,ℂ)

Unitarity norm: distance from the real manifold

NU=Tr (UU + −1)2

[Batrouni, Kawai, Rossi (1985)]

 ≈∑ Im ϕ2   for scalars



2nd problem: Gauge degrees of freedom also complexify

SL(N ,ℂ)    is a non-compact group

In SU(N) simulations, gaugefixing is not needed, as gauge freedom
   is a compact group. 

In Complex Langevin, this gives a non-compact group to be explored
   by the simulations.

Gauge fixing Gauge cooling

SU(2) one-plaquette
Decrease          using 
gauge transformations

NU

[Seiler, Sexty Stamatescu (2013)]
[Berges, Sexty (2008)]



Heavy Quark QCD at nonzero chemical potential (HDQCD)

Det M (μ)=∏x
det (1+C P x)

2 det (1+C ' P x
−1)2

P x=∏τ
U 0( x+τa0) C=[2 κexp(μ)]N τ C '=[2κexp(−μ)]N τ

Hopping parameter expansion of the fermion determinant
Spatial hoppings are dropped              unmovable quarks

S=SW [U μ]+ln Det M (μ)

CLE study using gaugecooling
[Seiler, Sexty, Stamatescu (2013)]

[Aarts, Attanasio, Jaeger, Sexty (2016)]
Phase diagram mapped out

At large lattice spacings
   Gauge cooling inefficient

Use small lattice spacings
(Use large      for small temperatures)N t



CLE and full QCD with light quarks 

[Sexty (2014)]

Direct simulations of full QCD
at high densities possible 
for the first time

Z=∫DU e−Sdet M

Fermionic drift:

K F=Da ln det M=Tr (M−1DaM )¿

Exact drift terms only for tiny 
Lattices.
Partial reduction of the matrix
allows also small lattices 

Large lattices: noisy estimator

Tr (M−1DaM )=⟨s + M−1DaM s⟩
s  =  noise field

One CG solution per update step



At low beta, CLE simulation instable

NT=8NT=6

Breakdown prevents simulations in the confined phase
for staggered fermions with N T=4,6,8

[Fodor, Katz, Sexty, Török (2015)]

Stay above the deconfinement temperature for now



Δ ( pT 4 )= p
T 4 (μ=μq)−

p
T 4 (μ=0)= 1

V T 3 ( lnZ (μ)−ln Z (0))

If we can simulate at μ>0

ln Z (μ)−ln Z (0)=∫0

μ
dμ

∂ ln Z (μ)
∂μ =∫0

μ
dμn(μ)

Using CLE it’s enough to measure the density  
            – much cheaper than Taylor expansion

Pressure of the QCD Plasma using CLE
[Sexty (2019)]

n(μ)=⟨Tr(M−1(μ)∂μM (μ))⟩



Pressure with CLE and improved action
In deconfined phase 
Symanzik gauge action 
stout smeared staggered fermions

Good agreement at small 
CLE calculation is much cheaper

[Sexty (2019)]

μ

further interesting quantities:  Energy density, quark number susceptibility, ... 



Mapping out the phase transition line

Follow the phase transition line
   starting from μ=0

Using Wilson fermions

Fixed lattice spacing and spatial vol.  
      scanN t

[Scherzer, Sexty, Stamatescu (2020)]



Can follow the line to 
       quite high μ/T

Lattice spacing:

Pion mass:

Volumes:  83 ,123 ,163

Finite size effects large

Consistent results  

a=0.065  fm

mπ=1.3  GeV

κ2≈0.0012

κ2=0.015

In literature
  For physical pion mass 

T c(μ)
T c (0)

=1−κ2 ( μ
T c (0) )

2

Open questions
Possible for lighter quarks?
Finite size scaling?
Where is the upper right corner of Columbia plot?  
                                           Critical point nearby?



Thermo study of QCD with DS
[Attanasio, Jaeger, Ziegler (2022)]

density pressure

Plaquette action + Wilson fermions mπ≈480 MeV

Simulations also at low temperatures   -  using dynamical stabilization
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Long runs with CLE

Unitarity norm has a tendency to grow slowly (even with gauge cooling)

Runs are cut if it reaches

Thermalization usually fast  
       – might be problematic close to critical point or at low T
 

∼0.1

UN=∑x ,ν
Tr(U x νU x ν

+ −1)



Getting closer to continuum limit

Test with Wilson fermions
Increase     by 0.1      – reduces lattice spacing by 30% 
  change everything else to stay on LCP  

β

behavior of Unitarity norm improves
autocorrelation time decreases as lattice gets finer



Dynamical Stabilization

“Soft cutoff” in the imaginary directions of SL(3,C)

Prevent growth of Unitarity norm

[Attanasio, Jäger (2018)]

K x ,ν
a →K x ,ν

a +iαDSM x
a

New term in drift

M x
a=i bx

a (∑c
bx
cb x

c )
3
        bx

a=Tr [λa∑ν
U x ,νU x ,ν

+ ]

New term is SU(3) gauge invariant  (not SL(3,C))
Not a derivative of an action
Not holomorphic
Gauge cooling is still used with DS on top
αDS  controls strength of attraction to SU(3) 



Dynamical Stabilization of a toy model

S=−(β+κ eμ)TrU−(β+κ e−μ)TrU−1 one Polyakov line of QCD 

Complex Langevin + dynamical stabilization

10 16 10 10 10 4 102 108 1014 1020

DS + 10 20

0.16

0.18

0.20

0.22

0.24

0.26

= 0.1, = 1.0, = 0.25

Phase Quenched
Inverse Polyakov loop
Polyakov loop

large αDS

system confined to real manifold

phasequenched simulation
ZPQ=∫DU|e−S(U )|=∫DU e−Re S(U )

fit function:  f (αDS)=A+ B−A
1+CαDS

D extrapolated to αDS=0

[Hansen, Sexty (2024)]



Dynamical Stabilization of a toy model

10 16 10 10 10 4 102 108 1014 1020

DS + 10 20
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= 0.1, = 1.0, = 0.25
Inverse Polyakov loop
Polyakov loop

Boundary terms:

“large temperature”

10 17 10 11 10 5 101 107 1013 1019 1025

DS + 10 20

0.545

0.550

0.555

0.560

0.565
= 1.0, = 1.0, = 0.25

Phase quenched
Inverse Polyakov loop
Polyakov loop

Fit range?

No dynamical stabilization needed

              Fit still works



10 16 10 10 10 4 102 108 1014 1020

DS + 10 20

10 7

10 5

10 3

10 1

101

103

105

N
U

= 1.0, = 0.25
= 0.1
= 1.0

0.135 0.283

R=Norm of DS drift
Norm of drift from action

¿

stronger stabilization drift
    squeezes distribution to real manifold

10 17 10 11 10 5 101 107 1013 1019 1025

DS

10 2

10 1

100

101

R

= 1.0, = 0.25
= 0.1
= 1.0 Relatively small contribution to drift

Except for high    
     where system is close to phasequenched

αDS

Nu∼α
−1/4



Dynamical Stabilization in QCD

At low temperatures stabilization needed
high temperatures, naive simulation is fine
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From far away, dyn.stab. seems 
   to correct give results also at low T

Let’s take a closer look!

[Hansen, Sexty (2024)]



Two versions of Dynamical stabilization

K x ν
a →K x ν

a −iαDSb x ν
a (bx ν

c b x ν
c )3 b x ν

a =Tr (λaU x ν
+ U x ν )

Original proposal [Jager, Attanasio (2018)]

Mixes force of all 4 link variables attached to a site   “Mixing version”

Modified proposal

K x ν
a →K x ν

a −iαDSb x
a(bx

cb x
c )3 b x

a=Tr (λa∑ν=1

4
U x ν

+ U x ν )

All 4 links have a separate stabilizing force          “Non-Mixing version”



Polyakov loop in QCD
Low temperature

Non-mixing force has stronger effect

Sigmoid fit work reasonably well

Strong stabilization drives to phasequenched
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= 5.2 non-mix
= 4.9 mix
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QCD 83 × 4, = 4.9, = 0.1, Nf = 4, m = 0.02, Mixing DS

Phase Quenched
Inverse Polyakov loop
Polyakov loop



Polyakov loop in QCD
High temperature

Non-mixing force has stronger effect

Dynamic stabilization was not really needed

Strong stabilization still drives to phasequenched



Fermionic observable: density

low temperature high temperature

low temperature:  Sigmoid fit gives a reasonable extrapolation

High temperature: dynamical stabilization is not needed



Summary

Dynamical stabilization = soft cutoff in imaginary directions

   Toy model: changing DS strength
                       Interpolate between full model and phasequenched
                       Sigmoid fit   -- extrapolate to zero DS force

   QCD test
         mixing and non-mixing version
         high temperature: stabilization unneeded
         sigmoid fit and extrapolation works reasonably
 
   Also: find a Kernel using Machine Learning,
            Reformulate, etc.
            
   TODO: can we get to thermodynamics at physical quark masses
               and low temperatures?
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