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Motivation
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A major roadblock for theoretical physics
No first principle access of fundamental quantities for heavy-ion collisions
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• There is no first principle description  
of the quark-gluon plasma (QGP) after heavy-ion collisions 

• Various stages with different assumptions: classical statistical  
approximation, kinetic theory, holography, . . .  

• Ab-initio description of real-time dynamics allows a 
coherent understanding of the QGP-dynamics 

• Direct computations of QCD real-time observables are difficult due to the sign problem (next slide) 

• The sign problem limits many different fields — progress may impact other research areas 
(QCD at finite chemical potential, cold quantum gases, compact stars, many-body physics, . . . .)
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• Yang-Mills action — integration along contour:    

• Path integral along the Schwinger-Keldysh contour 

 

• Thermal path :  periodic boundary encodes thermal equilibrium and temperature  

• Real-time path : encodes physical time — dynamical properties of the gauge fields

𝒞E T = 1/β

𝒞±

Real-time sign problem
Action becomes complex when physical time is not Wick rotated
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⟨𝒪[A]⟩ =
1
Z ∫ 𝒟Ae−S[A] 𝒪[A]

=
1
Z ∫ 𝒟AE e−SE[AE] ∫ 𝒟A+ 𝒟A− eiS[A+,A−] 𝒪 [A+, A−, AE]

This is the bad guy; the phase factor leads to an  

oscillatory integrand — sign problem!

SYM = −
1
4 ∫𝒞±,𝒞E

d4x Fμν
a Fa

μν



Introduction to complex Langevin
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• Langevin equation: 

• Drift term — describes classical evolution: 

• Gaussian noise — encodes the quantum fluctuations:  

• Real action : dyn. variables  are characterized by the limiting probability density  

• Complex action : drift term is complex — we need to complexify the dyn. variables 

✴ CL yields (provided it is stable) a real density , but is it the one we are looking for?

S x P(θ → ∞) ∝ e−S

S

P(Ar, Ai) ∈ ℝ

Introduction to complex Langevin (1/2)

∂θAa
x,μ(θ) = Ka

x,μ[A(θ)] + ηa
x,μ(θ)

auxiliary time θ

A naive generalization of real Langevin

7∫ 𝒟A 𝒪(A)e−S(A) = ∫ 𝒟Ar𝒟Ai P(Ar, Ai) 𝒪(Ar + iAi)

Ka
x,μ[A(θ)] = − δS/δAa

x,μ

ηa
x,μ(θ), ⟨ηa

x,μ(θ)ηa
y,ν(θ)⟩ = 2δabδμνδ(x − y)δ(θ − θ′￼)

𝔰𝔲(Nc) ∋ A → A = Ar + iAi ∈ 𝔰𝔩(Nc, ℂ)

Does that even exist? 
[D. Weingarten: Phys. Rev. Lett. 89, 240201]



Introduction to complex Langevin (2/2)
• Criteria of correctness — we know when it fails: 

1. Density of drift magnitude has to decay exponentially 

2. Vanishing boundary terms [D. Sexty et al: Phys.Rev.D 99 (2019) 1, 014512] 

• Aposteriori checks — mostly diagnostic 

A less naive generalization of real Langevin

⟨𝒪⟩ =
1
Z ∫D

𝒟A exp[−S(A)]𝒪(A) = lim
Θ→∞ ∫

θ0+Θ

θ0

dθ𝒪(A(θ))
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u(A) = ∥K(A)∥

p(u; θ) = ∫ 𝒟Ar ∫ 𝒟Ai δ(u − u(Ar + iAi))P(Ar, Ai; θ)

[K. Nagata et al: Phys.Rev.D 94 (2016) 11, 114515]

What shall we do if the criterion is not satisfied?

Computation expectation values with complex Langevin



• CL was found give to wrong results    ➞    interest crumbled after 80s 

• Development of stabilization methods reinvigorated the interest 
➞    Adaptive stepsize, gauge cooling, dynamical stabilization, regularization methods, kernels,… 

What can we do if the criterion is not fulfilled?
Need for alternation of sampling algorithm to obtain correct (real) probability density

9

∂θρ(A; θ) = LT
c,Γρ(A; θ)

ρ(A; θ → ∞) ∝ exp (−S[A])
?

Kernel transformations  in one boxΓ

Kernelled complex FPEKernelled CLE

∂θAR(x) = KΓ
R[A(x; θ)] + Γη(x; θ)

∂θAI(x) = KΓ
I [A(x; θ)], KΓ = ∫ dx′￼Γ(x, x′￼)K(x′￼)

Depends on how the real  changed  
via the kernelled real FPE  ➞  not fully understood!

P

∑
x,μ

Tr [UV
x,μUV†

x,μ − 1] → min , UV
x,μ = VxUx,μV−1

x+μ, V ∈ SL(Nc, ℂ)

ϵ(θ) = min [ϵ, B/∥K(A(θ))∥]



• Lattice spacing defines a UV momentum cutof that vanishes for   
(scale setting required — not discussed in this talk!) 

• Complex time contour is encoded in complex temporal lattice spacing  

• Complexification of link variables and plaquette (right figures)

a → 0

at ∈ ℂ

CL for Lattice Yang-Mills theory (1/2)
Complexification of the Wilson plaquette action
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Yang-Mills action Wilson plaquette action

Sw =
1
g2 ∑

x,μ≠ν

ρμν(x)Tr [Uμν(x) − 1]SYM = −
1
4 ∫ d4x Fμν

a Fa
μν

ρ0i(x) = −
as

at
, ρij(x) =

at

as

Ux,μν = Ux,μUx+ ̂μ,νU−1
x+ ̂ν,μU−1

x,ν

Ux,μ

Ux+ ̂μ,ν

U−1
x+ ̂ν,μ

U−1
x,ν

Ux,μ ≃ exp [igaμAμ(x + ̂μ/2)] ∈ SL(Nc, ℂ)

x + ̂μx
Ux,μ



• CLE is numerically solved by the Euler-Maruyama scheme 

• Anisotropic field-independent kernel: 

• Temporal and spatial links are updated differently — direction-dependent time step 

CL for Lattice Yang-Mills theory (2/2)
Introduction of an anisotropic kernel and the discretized CL equation
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Ux,μ(θ + ϵ) = exp [ita (iΓμϵ Da
x,μSW + Γμϵ ηa

x,μ(θ))] Ux,μ(θ) field-independent kernel

Γ0(t) = |a0(t) |2 /a2
s , Γs = 1

→ ϵ0 = |at |
2 /a2

s ϵ, ϵi = ϵ

Autocorrelation time grows slower than stable sampling interval 

Higher anisotropies lead to greater stability!

(see K. Boguslavski, PH, D. I. Müller: 10.1007/JHEP06(2023)011)



Systematics  
of the anisotropic kernel
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Benchmarking of stabilizing effect (1/3)

• Time translation invariance in thermal equilibrium allows 
comparison of one-point fcts. with Euclidean results (no sign problem) 

• First results on isosceles contours already in 2006 [D. Sexty et al: hep-lat/0609058] 

• Gauge cooling is not enough! 

• Expectation values of spatial plaquette:

Comparision of one-point functions with Euclidean results
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1+3D SU(2) Yang-Mills: 
L = 16 × 43, Nc = 2,
g = 1, β = 1/T = 4

𝒪[U] =
1

6NcNx ∑
x,i≠j

Tr [Ux,ij]

Our kernel reproduces the Euclidean result!



Benchmarking of stabilizing effect (2/3)

• Dyson-Schwinger equations of trace of 
spatial plaquette variables  

• Provides elf-consistency check of the validity 
of link configuration 

• RHS of Dyson-Schwinger equations is very 
sensitive to instabilities 
➞  good probe for stability 

Tr(Ux,ij)

Fluctuations of RHS of Dyson-Schwinger equations are sensitive to wrong convergence
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Benchmarking of stabilizing effect (3/3)

• If the density of the drift magnitude decays exponentially 
                            ➞  CL converges correctly  

• Compact support of histogram ➞ criterion is satisfied 

Direct check of criterion of correctness
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Results for unequal  
real-time correlation functions
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Simulation strategy
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• Path integral along SK-contour:  temporal continuum limit  is ill-defined 
 
➞  Regularization by tilt angle  needed 
 
         ➞  Extrapolation to real-time contour  

• Smaller tilt angles lead to aggravated instabilities 
 
➞  Anisotropic kernel counteracts instability by tuning the lattice anisotropy  
 
        ➞  Kernel in the temporal continuum limit naturally and systematically stabilizes simulations 
 
                ➞  Extrapolation  at sufficiently small  (stable simualtions)
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Model and simulation parameters
• Lattice SU(2) Yang-Mills theory: 

• 1+3D lattice with   

• Various regularization angles   

• Real-time extent of   

• Very, very small bare coupling   

• Simulation parameters: 

• Langevin step size   

• Sampling interval    (cold start) 

• Adaptive step size         (just catches outliers) 

• Gauge cooling         

• Anisotropic kernel factor  

Nt × N3
s ≈ 64 × 163

tan(α) ∈ [1/3,1/96]
max[Re(t)] = 1.5β = 1.5

g = 0.5

ϵ = 10−4

θ ∈ [10,20]
B = 103

NGC = 1, αGC = 0.05
Γ0 = |at |

2 /a2
s = 1/162, Γi = 1
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Constant unitarity norm (1/2)

• We sample in a Langevin time interval, where  
the unitarity norm is constant 
➞ no broadening of distribution in complex space 

• Various tilt angles  all lead to a plateau 
 ➞ plateau height depends on the angle  

• Simulations are not indefinitely stable 
    ➞. Stable until at least      
    ➞  Healthy margin to avoid instability effects 

α
α

θ = 30

Sampling from trajectory intervals with constant unitarity norm
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Constant unitarity norm (2/2)
Effectiveness of kernel becomes evident at small tilt angles
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• Magnetic energy density on the lattice 

• Clover leafs 

• Connected part of the integrated correlation function 

➞  Integration over spatial lattice:  - less statistics needed  
                                                                - shorter runtimes

Correlators of the magnetic energy density
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2αB2(t, x) =
1
4 ∑

i<j

F2
ij(t, x) ≈ − ∑

i<j

1
a2

i a2
j

Tr {𝒫A(Cij(x))2}

Cμν(x) =
1
4

[Uμν(x) + Uν(−μ)(x) + U(−μ)(−ν)(x) + U(−ν)μ(x)]

C(t, x; t′￼, x) = ⟨B2(t, x)B2(t′￼, x′￼)⟩ − ⟨B2(t, x)⟩⟨B2(t′￼, x′￼)⟩,

C(t, t′￼) =
1

N3
s ∑

x

C(t, x; t′￼, x)

(extrapolated )α → 0



Reproduction of Euclidean Correlator

• Euclidean correlator is correctly reproduced for sufficiently small tilt angles  

• Reference data obtained on a Euclidean lattice in the absence of a sign problem

α

Direct check of ‘non-local’ observable — stronger than one-point functions
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Does the extrapolation converge?

• Statistical correlation function:     

• Spectral function:                             

F = Re DF

ρ = − sgn(Δt) Im DF

Computing the spectral and statistical correlation function for various angles
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Does it converge correctly?

• Relation of time-order Feynman propagator and Wightman functions : 

• Valid for extrapolated data but NOT for finite tilt angles 

        ⇾  requires vanishing regularization, non-trivial relation 

        ⇾  sizable dampening of the oscillation 

        ⇾  confirmation of our approach!

DF D>(t, t′￼) = C(t−, t′￼+)

Consistency between different correlation function emerges at α → 0

24

°2

0

2

4

R
ea

l

DF (¢t) D>(¢t)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

¢t = t ° t0

°2

0

2

Im
a
g
in

a
ry

tan(Æ) = 1/12

ta
n(

Æ)
!

0

£10°4

£10°4

DF(t, t′￼) = Θ(t − t′￼)D>(t, t′￼) + Θ(t′￼− t)D<(t, t′￼)



• ‘Rectangular’ contour is more stable than ‘wedge’ contour and yields the same information 

• Tilting is still necessary (blue line) to regularize the path integral 

• Extending  to  with the same simulation and model parametersmax[Re(t)] = 1.5β 2β

Extending real-time range by different contour
Split source of instability into two islands (forward/backward paths)
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Fitting the correlation function (1/2)
• Fitting damped oscillation to analyse the fluctuation-dissipation relation

Small-frequency behavior only accessible with sufficient real-time extent

26

°2

0

2

4

F

°2.0 °1.5 °1.0 °0.5 0.0 0.5 1.0 1.5 2.0

¢t = t ° t0

°2

0

2

Ω

£10°4

£10°4

Wedge contour

Rect. contour

F(Δt) ≈ Aeγ|Δt| cos(ωΔt), ρ(Δt) ≈ Aeγ|Δt| sin(ωΔt)

Preliminiary



Fitting the correlation function (2/2)
• Fitting damped oscillation to analyse the fluctuation-dissipation relation

Analytical form of integrated correlation function is unclear but not harmonic oscillation
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Fluctuation-dissipation relation

• Varying  in Bose-Einstein stat.  indirectly determines temperature ➞  (left) 

• Quantum  is essential to obtain agreement over whole  range

β nBE β ≈ 1

1/2 ω

Fitting allows to verify fluctuation-dissipation relation to good accuracy
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nBE(β, ω) = 1/(eβω − 1)

Preliminiary



Limitation, outlook and 
conclusion
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Limitations of our approach
• Systematic improvement of stability for larger anisotropy 

✔ extension of time extend and stronger couplings 

• Larger coupling  severely worsens the instabilities  ⇾  necessary anisotropy is huge 

X not the solution for the sign problem in gauge theories in real-times

g

30

higher anisotropy as/ |at | increased comp. cost

larger lattices

larger autocorrelation times

smaller necessary time step

BUT: We can build on it and use it as a basis or in combination for future developments!



Conclusion and outlook
• Sign problem impedes direct access to real-time  

dynamics of field theories 

- Spectral functions 

- Transport properties 

- Pre-equilibrium dynamics
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• Complex Langevin tries to overcome that issue 

- Recent conceptional and practical progress 

- Development of kernels for greater stability 

- Correlation function in 1+3D SU(2) Yang-Mills 

-  Numerical reproduction of fluct.-diss. rel.

• How to overcome current limitations? 

- Combination of kernel ideas?  

- Design of field-dependent kernels based  
on Lefschet thimbles? 

• How do we set the scale on SK-contours? 

• Further application? 

- Non-thermal systems? Incl. fermions?



Thank you for your attention!
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