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Notivation



A major roadplock for theoretical pnysics

No first principle access of fundamental quantities for heavy-ion collisions

final detected

Relativistic Heavy-Ton Collisions

- There is no first principle description
of the quark-gluon plasma (QGP) after heavy-ion collisions

}

- Various stages with different assumptions: classical statistical
approximation, kinetic theory, holography, . . .

T

pre-.
egunllbr'.lum , hvdrod ,
ynamics viscous hydrodynamics free streaming

- Ab-initio description of real-time dynamics allows a come ot 0t o108 fe
coherent understanding of the QGP-dynamics C. Shen, U. Heinz [arxiv-1507.01558]

- Direct computations of QCD real-time observables are difficult due to the sign problem (next slide)

- The sign problem limits many different fields — progress may impact other research areas
(QCD at finite chemical potential, cold quantum gases, compact stars, many-pbody physics, . . . .)




Real-time sign proplem

Action becomes complex when physical time is not Wick rotated

. . . . 1 )
Yang-Mills action — integration along contour: Syy = _ZJ d*x Fi"Fy,
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This is the bad guy; the phase factor leads to an
oscillatory integrand — sign problem! —iP T Thermal equilibrium: A(f) = A(—ip)

v

Thermal path € periodic boundary encodes thermal equilibrium and temperature T = 1/p

Real-time path € ... encodes physical time — dynamical properties of the gauge fields
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ntroduction to complex Langevin (1/2)

A naive generalization of real Langevin

( )

0pAL0) = KLJAWO)] +1,0)

Langevin equation:

S Z___qguxiliary time @

Drift term — describes classical evolution: K [AO)] = — 65 /6A¢,

Gaussian noise — encodes the guantum fluctuations: e, (0), (n (D () = 2595 5(x — v)6(0 — ")

Real action S: dyn. variables x are characterized by the limiting probability density P(O — o0) x ™

Complex action S: drift term is complex — we need to complexify the dyn. variables
8u(N) > A—> A=A +iA € 8l(N,C)

* CL yields (provided it is stable) a real density P(A,, A)) € R, but is it the one we are looking for?

~

-
AOA)e W = | DA DA P(A,A) OA, + iA.
J@ OA)e 7 r@ l ( " l) O a l) Does that even exist?
. / [D. Weingarten: Phys. Rev. Lett. 89, 240201]
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ntroduction to compl

A less naive generalization of real Langevin

cX .

angevin (2/2)

- Criteria of correctness — \we know when it fails:

1. Density of drift magnitude has to decay exponentially
[K. Nagata et al: Phys.Rev.D 94 (2016) 11, 114515]

p(u; 0) = J@A,,
u(A) = [|K(A)|

2. Vanishing boundary terms [o. sexty et al: Phys.Rev.D 99 (2019) 1, 014512]

- Aposteriori checks — mostly diagnostic
What shall we do if the criterion is not satisfied?
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Computation expectation values with complex Langevin

No stabilisation
GC, N; =16
GC + I'(16)
GC +I'(64)

GC + I'(256)
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What can we do if the criterion is not fulfilled?

Need for alternation of sampling algorithm to obtain correct (real) probability density

- CL was found give to wrong results = interest crumbled after 80s

- Development of stabilization methods reinvigorated the interest
—  Adaptive stepsize, gauge cooling, dynamical stabilization, regularization methods, kernels, ...

C Y7 Uy UL - 1| - min, U, =V,U, Vi, VeSLIN,©)
e(0) = min |e, B/||K(A@))|||

Kernel transformations I' in one box

Kernelled CLE Kernelled complex FPE

0yAp(x) = KY[A(x; 0)] + /Ti(x; 0) # pp(A; ) = L -p(A; 0)

pPA; 0 - 0) xexp(—S[A])
0pA;(X) = KIF [A(x; 0)], K' = de’ ['(x, x)K(x")
Depends on how the real P changed

via the kernelled real FPE — not fully understood!



CL tor Lattice Yang-Mi

s theory (1/2)

Complexification of the Wilson plaguette action

U

-
Yang-Mills action

1 Vra
SYM — = ZJd4XF5 F//”/
\_

‘ ' S, =§ Y 9 (@ Tr [Uﬂy(x) _ 1]

) X o——— 5 x+

Wilson plaguette action
Uy, = exp |iga, A, (x + i12)| € SLN,, ©)

X,UFU J U

g iy
pOi(-x) — = pzj(x) -
d; U

L attice spacing defines a UV momentum cutoff that vanishes fora — 0

(scale setting required — not discussed in this talk!)

Uy,
=U. U . UL Ul

Complex time contour is encoded in complex temporal lattice spacing a, € C Ve = YrpVsriwVsiop Ve

Complexification of link variables and plaguette (right figures)
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CL tor Lattice Yang-Mills theory (2/2)

Introduction of an anisotropic kernel and the discretized CL equation

CLE is numerically solved by the Euler-Maruyama scheme

i1 (zFMGDa Sw+4/L € ﬂﬁﬂ(9)>l Uen® | field-independent kernel

- Anisotropic field-independent kernel: L) = |ag(D)[*la2, T. =1

- Temporal and spatial links are updated differently — direction-dependent time step
- e =|a|*la’e, € =c¢

Autocorrelation time grows slower than stable sampling interval
q

Higher anisotropies lead to greater stability!

(see K. Boguslavski, PH, D. I. Muller: 101007/JHEPO6(2023)011) 1



oystematics
Of the anisotropic kernel



- stapl

Benchmarking o

Comparision of one-point functions with Euclidean results

17INg €

ect (1/3)

Time translation invariance in thermal equilibrium allows
comparison of one-point fcts. with Euclidean results (no sign problem)

First results on isosceles contours already in 2006 [D. Sexty et al: hep-lat/0609058]

Gauge cooling is not enough!

Fxpectation values of spatial plaguette:
1 _
O[U] = Tr|U ]
(U] 6N0Nx£ Uy

Our kernel reproduces the Euclidean result!

1+3D SU(2) Yang-Mills
L=16x4° N, =2,
g=1,p=1/T=4

0:

1.6 tan(a) = 1.0: tan(a) = 0.5:
51.4- -—-=-- No stabilisation —=--- No stabilisation
El 6| GC,N; =64 -ooeeee GC, N, = 1024
= —— GC+0(64)  —— GC+I(1024)

C% 1.0- Fuclidean

2.(0.81

45 ";.‘ 2 oA A oAl ael
2.0.6- ‘EII Our kernel I’

204 U |

021 | ! No k-erriel

0.0— ' ' ' '
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Langevin time 6
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Benchmarking of stabilizing eftect (2/3)

Fluctuations of RHS of Dyson-Schwinger equations are sensitive to wrong convergence

2N - 1) <Tr(Ux,ij)> B

2;\7 Z p ip <Tr [(Ux,ip B U)Zi,lo) Ux,ij] >

-  Dyson-Schwinger equations of trace of N. -
spatial plaquette variables Tr(U, ;) No kernel Our kernel
. . -~ L — s
» Provides elf-consistency check of the validity 1w} i it ik FIERRE ~--- RHS tan(a) = 10
- 2 - IR A R A AT
of link configuration 81 R e ] S ETRLR e N B )
E01 NAAAIE ARy b il &) 00 o hEIGH aRmts e i
: : . % §'||="|II I: il :|: I: i} ::III
-  RHS of Dyson-Schwinger equations is very 5 O] gl e paghoht’ i R[] a s s
sensitive to |nstob|l|t|es” s [T h TR TR T S e ey
— good probe for stability JRURH SHISR B S S S TS ~~—~ RHS: tan(a) =05
S T HARN T T R R N
= \:‘: g Hl il I, | I::::: ii"= .y ::' -
. I 1A nah o lll:l |||| |I :l
B 0 [ SRStGR i B o Ll AR Wt g | o R Y
E:: I | A kR H Ak !‘ ¥l ':||:| o
Kernel quds to sqtlsfled DSE! 0 EH ': ! I}\Io klell‘:nell‘:l la;l;g?llfluclztuﬁlgps of"RH.S'I :I' i : IOur kernel I: LHS anleHS commlde
0 5! 10 15 20 25 0 5} 10 15 20 25
Langevin time : 6 /T Langevin time : 6/Tg
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Benchmarking of stapi

Direct check of criterion of correctness

Tect (3/3)

. |f the density of the drift magnitude decays exponentially
— CL converges correctly

- Compact support of histogram = criterion is satisfied

Kernel systematically localizes the histogram for
growing N, or larger anisotropies a /| a,|!
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Results for unegual
real-time correlation functions



Simulation strategy

- Path integral along SK-contour: temporal continuum limit g, — Oisill-defined

Im(z)

— Regularization by tilt angle a needed

— Extrapolation to real-time contour ¢ — 0

|at|

mm Schwinger-Keldysh (SK) contour
- Regularized SK contour

- Smaller tilt angles lead to aggravated instabilities

— Anisotropic kernel counteracts instability by tuning the lattice anisotropy a,/a; — 0

— Kernel in the temporal continuum limit naturally and systematically stabilizes simulations

— Extrapolation @ — 0 at sufficiently small a, (stable simualtions)
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Model and simulation parameters

Depends on tilt angle, as length of contour!
o Lattice SU(2) Yang-Mills theoryz/

. 143D lattice with N, X N; =~ 64 X 16

- Various regularization angles tan(a) € [1/3,1/96]
. Real-time extent of max[Re(t)] = 1.5 =1.5
. Very, very small bare coupling g = 0.5

Euclidean path 7

 Simulation parameters:

|
=

. Langevin step size € = 107
. Sampling interval 8 € [10,20] (cold start)
. Adaptive step size B = 10°  (just catches outliers)

. Gauge cooling  Nge =1, a5 = 0.05
. Anisotropic kernel factor I, = \at\z/asz =1/16%, T, =1

m
S
|at|

mm Schwinger-Keldysh (SK) contour
- Regularized SK contour
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Constant unitarity norm (1/2)

Sampling from trajectory intervals with constant unitarity norm

- We sample in a Langevin time interval, where
the unitarity norm is constant
— no broadening of distribution in complex space

- Various tilt angles a all lead to a plateau
— plateau height depends on the angle o

- Simulations are not indefinitely stable

—_Stable until at least 8 = 30
— Healthy margin to avoid instability effects

—

U

Unitarity norm: F'|

0.30 v+ L tan(a)
e T
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Constant unitarity norm (2/2)

Fffectiveness of kernel becomes evident at small tilt angles

- At such a small bare coupling...
wouldn’t this work anyway regardless of the kernel?
— No.

- For smaller tilt angles a the effect of the anisotropic
cernel becomes evident

- Without kernel: exponential growth of unitarity norm

- With kernel: plateau at a moderate level is reached

&
Qo
l

&
@)
l

Unitarity norm: F|U]
= -
O N
| |

tan(a) = 1/96

0.50 - (@) /
0.25 - I
0.00 - | |

0.0 0.2 0.4

== w /0 aniso. kernel

—— w/ aniso. kernel

I I I

10 15 20

Langevin time: 6
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Correlators o

the magnetic energy density

Magnetic energy density on the lattice

B%(t,x) = %Z Fl.Jz.(t, X))~ — Z

- = a2aq?
i<j i<j !

J

Clover leafs

1
Cul) = 2 LU0 + Uy (0 + Uy p(0) + Uy (0]

Connected part of the integrated correlation function

C(t,x;t,x) = (B*(t,x)B*(t', x")) — (B*(t,x)}{B*(t, x)),

1
Ct, 1) = ng C(t, x; 1, x)

— |ntegration over spatial lattice: - less statistics needed

- shorter runtimes

Tr { P A(Cl-j(x))z }

Im(z)

Real-time path Iy tm:ax

Euclidean path 7

mm Schwinger-Keldysh (SK) contour
- Regularized SK contour

_iﬂ
Re C(t,t") ImC(t,t") x10™*
0
"0
! 3
4 \].é\
_ % 0~0
N
\.,j_ % ].(j\
N
0 %)

3
O —
t_

t |
(extrapolated a — 0)
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Reproduction of Euclidean Correlator

Direct check of 'non-local” observable — stronger than one-point functions

- Euclidean correlator is correctly reproduced for sufficiently small tilt angles a

- Reference data obtained on a Euclidean lattice in the absence of a sign problem

X 10~ *
Im(7) X Regt) memmm FEucl. sim. tan(a)
y
k <
:" - 1/6
1/12
<[ Euclidean correlations C(z, ")
i E 1/24
! 1/48
| 1/96




Does the extrapo

Computing the spectral and statistical correlation function for various angles

ation converge’

. Statistical correlation function: F = Re D¥

» Spectral function:

p = —sgn(Af) Im D?

-1

Time-ordered Feynman propagator
DF(At =1, — 1)) = C(1,,1,)

Converge to finite quantity for o — 0!

Encode fundamental, microscopic
excitation of the observables

—1.5

—1.0

—0.5 0.0
At =t —t

0.5

tan(a)

- 1/3
1/6
1/12
1/24
1/48

1/96
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Does it converge correctly?

Consistency between different correlation function emerges ata — 0

. Relation of time-order Feynman propagator D*and Wightman functions D (¢, ') = C(z_, t}.):

( )

Df(t,t) =0 —-1t)D>(t,t) + O — )D<(t, 1)

\_ J

—— DY (At) === D~ (At)

Real

- Valid for extrapolated data but NOT for finite tilt angles | | | | | | |

- requires vanishing regularization, non-trivial relation

Imaginary

- sizable dampening of the oscillation

- confirmation of our approach!



Extending real-time range oy different contour

Split source of instability into two islands (forward/backward paths)

- ‘Rectangular’ contour is more stable than ‘wedge’ contour and yields the same information

- Tilting is still necessary (blue line) to regularize the path integral

o Extendingmax|[Re(?)] = 1.5fto 2/ with the sume simulation and model parameters

x10~4
Im(t) max [Re(l‘)] g4 Wedge contour

Rect. contour

o Re(?)

There is still a lot of potential!

—ip

—-20 —-1.5 —1.0 —=0.5 0.0 05 1.0 1.5 2.0
At =t —t’




Small-frequency behavior only accessible with sufficient real-time extent

-1tting the corre

ation:

unction (1/2)

Fitting damped oscillation to analyse the fluctuation-dissipation relation

Mcos(wAt), p(Ar) ~ Ae"'* sin(wAr)

F(A?) ~ Ae”

At =t —t'

10—4 le—4
...... 4 2, —]
4 - Wedge contour ¥ % = = Oscil. fit
— Rect. contour j (x x F
2 - 2 1 v \, "
c3 LR % of \. e
ol &5 N ; v Pl
0 - % \ xx
X :v \c [ X
—21 )\\ 7 X £
—2 | | | | | | | | | le—a | yesc? | ﬁ‘mxll
- -
<107 " — — Oscil. fit
2 - ‘ 7N R o
4 \ /4 X 5
s, 72 A II \\ //
9 - 21 \ —
. N 7
Yo
I I I I I I I I I ' ' ' ! ' ' ' ' '
—2.0 —1.5 —1.0 —0.5 0.0 05 1.0 1.5 2.0 —2.0 =15 =1.0 =05 %g 0> 1.0 15 20
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Fitting the correlation tunction (2/2)

Analytical form of integrated correlation function is unclear but not harmonic oscillation

. Fitting damped oscillation to analyse the fluctuation-dissipation relation
F(A?) =~ Ae"'? cos(wAt), p(At) ~ Ae"? sin(wAt)

le—4

g4 Wedge contour il = == Oscil. fit

—— Rect. contour

» Analytically not a dampened oscillator
X 10 — better fitting function?

I I I I I I I I I ' ' ' ! ' ' ! ' ' 27
—2.0 —1.5 —1.0 —0.5 0.0 0.5 1.0 1.5 2.0 -20 —-1> =10 =05 %g 6> 1.0 15 20

At =t —t'



Fluctuation-dissipation relation

Fitting allows to verity fluctuation-dissipation relation to good accuracy

. Varying p in Bose-Einstein stat. ngg indirectly determines temperature = f = 1 (left)

. Quantum 1/2 is essential to obtain agreement over whole w range

3.0 le—4 le—4
—— RHS, 8=0.7
2.5 4 —— RHS,8=1.0
' —— RHS,B8=1.5
ol Y LHS, F
1.5- [ FDR:
{F(w) = —1(1/2 + nge(B, w)) 2p(w)
L0 , nge(B @) = 1(eP = 1)
0.5
0.0_ ~~~~~~~ 28
0 2 4 6 8 10 12 14




[.imitation. outlook ana
conclusion



_Imitations of our approacn

- Systematic improvement of stability for larger anisotropy
Vv extension of time extend and stronger couplings

4 | N
/ larger lattices \
higher anisotropy a,/|a,| £__. smaller necessary time step 3 increased comp. cost
\ larger autocorrelation times /
\_ ),

- Larger coupling g severely worsens the instabilities - necessary anisotropy is huge

X not the solution for the sign problem in gauge theories in real-times

BUT: We can build on it and use it as a basis or in combination for future developments!
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Conclusion and outlook

4 N
. Sign problem impedes direct access to real-time || e

dynamics of field theories

- Spectral functions

)

- [ransport properties

- Pre-equilibrium dynamics

Complex Langevin tries to overcome that issue

- Recent conceptional and practical progress

- Development of kernels for greater stabilit

- Correlation function in 1+3D SU(2) Yang-V

- Numerical reproduction of fluct.-diss. rel.

Y
ils

\_ AN
ImC(t,t") x10~* :
0 M N
Q?'0
<) 3
4 J,é\
__ 3
2 “0
~1+ 3 N
X 7 ]°<j‘ o
N ([ J
0 %)

v

How to overcome current limitations?
- Combination of kernel ideas?

- Design of field-dependent kernels based
on Lefschet thimbles?

How do we set the scale on SK-contours?
Further application?

- Non-thermal systems? Incl. fermions?

AN
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Thank You for Your attention!



