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Introduction to 
the complex Langevin method 

and Lefschetz thimbles
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What we are trying to achieve?
Computing… the non-deterministic polynomial hard way…

Expectation values:     

1. If  is real,   is a probability density   Monte Carlo  

2. If  is complex this does not apply    Sign problem
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We computed unequal real-time correlation fcts. for 
Yang-Mills results in 1+3D (see talk on Fri 11:30) 

         … at small bare couplings …                

  extension is work in progress→
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• Langevin equation: 

• Drift term:         — describes classical evolution 

• Gaussian noise:       — encodes the quantum fluctuations  

• Real action : dyn. variables  are characterized by the limiting probability density  

• Complex action : drift term is complex — we need to complexify the dyn. variables  

✴ CL yields (provided it is stable) a real density , but is the one we are looking for?

K(z(θ)) = − S′￼(z(θ))

η(θ)

S x P(θ → ∞) ∝ e−S

S x → z = x + iy

P(x, y) ∈ ℝ

Introduction to complex Langevin (1/2)

∂θz(θ) = K(z(θ)) + η(θ)
auxiliary time θ

A naive generalization of real Langevin
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∫ dx 𝒪(x)e−S(x) = ∫ dxdy P(x, y)𝒪(x + iy)



Introduction to complex Langevin (2/2)
• Expectation values with complex Langevin: 

• Correspondence to Fokker-Planck equation: 

• Criterion of correctness — we know when it fails: 

• Density of drift magnitude has to decay exponetially 

 ,  

• But what shall we do if the criterion is not satisfied?

p(u; θ) = ∫ dx∫ dy δ(u − u(z))P(x, y; θ) u(z) = |K(z) |

A less naive generalization of real Langevin

⟨𝒪⟩ =
1
Z ∫D

dx exp[−S(x)]𝒪(x) = lim
Θ→∞ ∫

θ0+Θ

θ0

dθ𝒪(z(θ))

∂θP(x, y; θ) = LTP, LT = ∂x(∂x + ReK) + ∂yImK
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We solve that directly  
for simple models!

[K. Nagata et al: Phys.Rev.D 94 (2016) 11, 114515]



• Complexify the dynamical variables:     

• Thimbles (SD paths): 
 

• Co-thimbles (SA paths): 

 

• Expectation values with Lefschetz thimbles:

x → z = x + iy

Dσ := {z(tf ) ∈ ℂ : z(−∞) = zσ, ·z(tf ) = − S′￼(z(tf ))}

Kσ := {z(tf ) ∈ ℂ : z(−∞) = zσ, ·z(tf ) = S′￼(z(tf ))}

Lefschetz thimble approach
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Application of the Cauchys theorem to the path integral

⟨𝒪⟩ =
∑σ nσe−iIm[S(zσ)]Zσ⟨𝒪⟩Zσ

∑σ nσe−iIm[S(zσ)]Zσ

Z = ∫D
dz exp(−S(z)) = ∑

σ

nσe−iIm[S(zσ)] ∫Dσ

dz e−Re[S(z)] =: ∑
σ

nσe−iIm[S(zσ)]Zσ

(  number of intersections of  and ,   are stationary points of the action )nσ Kσ D zσ S
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Nothing but intuition and a hunch…

Similarities between CL and LT: 
1. Analytical continuation of theories 

2. Introduction of auxiliary times   and   

3. CL drift term  and flow equation 

θ tf
−S′￼ −S′￼
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Connection between Lefschetz thimbles and complex Langevin

Complex Langevin is sometimes considered to be an “important sampling near thimbles” 

 rather an important sampling near attractive stationary points 

• Connection is not well understood — is the criterion of correctness for CL linked to LT? 
• We use the Lefschetz thimble as a tool to find regularizations for complex Langevin!

→
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The failure of complex Langevin: 
Complex cosine model
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Complex cosine model

• Weight function of complex cosine model: 

• Stationary solution of the stochastic process:    

• Criterion of correctness is not satisfied: 
• Emergence of boundary terms [D. Sexty et al arXiv:1808.05187] 

• Decay of density of drift magnitude (right figure) 

• Analytic expectation values (bottom figure):

10
⟨𝒪k⟩ = ∫[−π,π]

dx ρ(x)cos(kx) = (−1)k Jk(β)
J0(β)

Pst(x, y) =
1

4π cosh2(y)

ρ(x) = e−iβ cos(x), β ∈ ℝ

Non-trivial but fully controlled model with wrong convergence of CL
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Observables:   𝒪k(x) = cos(x)k

[K. Nagata et al: Phys.Rev.D 94 (2016) 11, 114515]

https://arxiv.org/abs/1808.05187
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Thimbles of the cosine model

• Established “criterions of correctness” or mostly diagnostic 

• Decay of drift magnitude 

• Boundary terms 

• Lefschetz thimbles might allow for a more detailed understanding 
of the Langevin dynamics: 

• Attractive/repulsive stationary points and singularities 

• Weights and probability currents 

• What features of a theory lead to failure/success of CL?
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Simple structure with obvious consequences

What should we do if they fail?

Pst(x, y) =
1

4π cosh2(y)



Designing weight regularizations

• Add a regularization term to the original weight 

• We modify/“regularize” the weight with three objectives 

1. Only one relevant stationary point should be “close” to the real line 

2. Singularities that connect to contributing thimbles should be at the real boundary of  

3. We want to avoid any asymptotic structure of contributing thimbles (“tamed” thimbles)

D
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If you cannot simulate the theory — change the theory

ρ(x) ⇝ ρR(x) := ρ(x) + R(x)

Similiar ideas have been 
investigated before: 

  Z. Cai et al arXiv:2109.12762 
  F. Attanasio et al arXiv:1808.04400  
  A. C. Loheac et al arXiv:1702.04666 
  S. Tsutsui et al arXiv:1508.04231 

…

In general those objectives are not achievable for neutral regularization — expectation values 
change and we need to compute corrections!



Curing the criterion of correctness
• Regularization of the cosine model 

• Break periodicity and periodic continuation breaks holomorphicity 
• Boundary at  is repulsive and does not contribute! 

• Regularization term achieves our goals: 

1. Polynomial term leads to one stationary point at the origin 

2. Constant shifts singularities to the  

3. No asymptotic structure of thimbles, for  
we have the drift:

Re(z) = ± π

±π

|r | → ∞
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Regularization cures the wrong convergence issue

ρR(x) = eiβ cos(x) + R(x)

R(x) = r(x2 − π2) − exp(iβ), r ∈ ℂ

Im [KR(x + iy)] = − y [ 1
(x − π)2 + y2

+
1

(x + π)2 + y2 ]
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• Correction term for regularized expectation values 

• How to compute the bad guy ? 

 Apriori knowledge of the original system — observable independence

Q

→

Corrections for regularizations
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Apriori knowledge allows computation of correction term

⟨𝒪⟩ρ = ⟨𝒪⟩ρR
+ CorrR(𝒪)

CorrR(𝒪) = (⟨𝒪⟩ρR
+ ⟨𝒪⟩R)Q, Q =

ZR

Zρ

Dyson-Schwinger equation:    

Option for the cosine model:

⟨𝒪*⟩ρ = ⟨𝒪′￼− 𝒪S′￼⟩ρ = 0 → Q =
⟨𝒪*⟩ρR

⟨𝒪*⟩R − ⟨𝒪*⟩ρR

𝒪* = cos(x) + iβ sin(x)cos(x)

Potential problem: vanishing for !r → ∞
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A model  where CL fails, depending on the coupling: 
Polyakov loop model
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Reduced Polyakov loop model (1/2)

• Polyakov loop action in SU(2): 

• Gauge freedom leads to equivalence to the one-link model 

• Haar measure can be reduced 

• Translating observables and effective action 

• Compact domain of integration
16

Reducing a ‘gauge theory’ to a ‘scalar theory’

P =
Nchain

∏
i=0

Ui, Ui ∈ SU(Nc)

…i = 0 1 2 3 Nchain − 1 NchainU0

UNchain

U1 U3
S = − β Tr(P), β ∈ ℂ

∫SU(2)
dU eβTr(U) ⇝ ∫

π

−π
dx sin2(x) e2β cos(x)

S(x) = − 2β cos(x) − ln(sin(x)2), Tr(U) ↔ 2 cos(x)
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Reduced Polyakov loop model (2/3)

• For  (up to point symmetry) only one thimble contributes 

                                          ➞    sharp histogram/density    ➞    CL converges correctly

β = (1 + i 3)/4
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For small-magnitude couplings, CL works…
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Reduced Polyakov loop model (3/3)
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… for large-magnitude couplings, it doesn’t.
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• For  multiple (non-compact) thimble contribute 

                                          ➞    slowly decaying histogram/density    ➞    CL converges wrongly

β = (1 + i 3)/2



Designing weight regularizations (1/2)
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Changing the Lefschetz thimble structure to achieve correct convergence

• Initial situation: The model with  which we want to compute exhibits multiple relevant thimbles 
leading to the slow decay of the drift magnitude, breaking the criterion of correctness. 

• Goal: Find a positive definite function , such that  has only one relevant thimble leading to a 
compact histogram and sufficiently fast decay of the drift magnitude.

ρ

R ρ + rR

Conjecture:  
The criterion of correctness of CL is satisfied if there is exactly one 

compact relevant Lefschetz thimble.



Designing weight regularizations (2/2)

• Design approach:  

1. The drift of the regularization  should point to the real line ➞ at large enough  we find 
 dominating the dynamics and squeezing it to the real line 

2. Regularized weight function  zeros at the boundary which should be the only real zeros of 
the function 

3. Relevant thimbles have to connect to the real zeros leading to a compact thimble structure 

• Scenarios which can happen: 

• The desired thimble structure is only achieved asymptotically at  — no information of 
original model left 

• Multiple relevant and compact thimbles are present for all , breaking the criterion of correctness

R′￼ |r | → ∞
R′￼

ρ + rR

|r | → ∞

r

20

Foundation of constructing regularizations (+ some trial and error maybe)



• Weight function of reduced PLM:         

• Two candidates that follow the design approach: 

1. Same as for the cosine model:  (right) 

• Desired drift properties, pointing towards the real line 

• Eliminates zero at the origin from he Haar measure 

• BUT: multiple thimble structure for all  (top figure),  
➞ criterion is broken (bottom figure) despite compact structure 

2. Periodic regularization:  (next slide)

ρ = sin2(x)e2β cos(x)

R1(x) = x2 − π2

r

R2(x) = cos(x) + 1
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Two potentially viable candidates for regularizations

Haar measure dU =̂ sin2(x)dx



Regularizing the reduced PLM (2/3)

• Regularization  achieves desired thimble structure ➞ correct convergenceR(x) = cos(x) + 1
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Squeezing/‘Compactification’ of CL histogram via regularization term
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Regularizing the reduced PLM (3/3)
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Regularization term cures the criterion of correctness
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Regularizations in SU(2) (1/2)

• Polyakov loop action in SU(2): 

• Regularization  

• We simulate a chain with  links 

• Note: complexification yields  

✴   iterative gauge transformation (‘gauge cooling’) 

✴   minimize unitarity norm

R[P] = Tr[P]/2 + 1, Tr[P] ∈ [−2,2]

Nchain = 64

SU(2) ⇝ SL(2,ℂ)
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Translating back from the reduced model to the SU(2) link-formulation

P =
Nchain

∏
i=0

Ui, Ui ∈ SU(Nc)

…i = 0 1 2 3 Nchain − 1 NchainU0

UNchain

U1 U3
S = − β Tr(P), β ∈ ℂ
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• Regularization  achieves desired thimble structure  
                                                     ➞    sharp histogram/density    ➞    correct convergence

R[U] = Tr[U]/2 + 1
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Our approach in conjunction with gauge cooling works also for SU(2)
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Generalization to the SU(3) Polyakov loop model: 
Applying the same ideas to a different group
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The Polykov chain in SU(3) (1/2)

27

Similarities with finite density QCD

• Action for the SU(3) PLM 

- Couplings  

- Chemical potential  

• Source of sign problem: 
Traces of the Polyakov loops are complex; for  and  we have  

• Sign-problem is rather weak    ➞    solvable using CL with gauge cooling 

• To make it harder we consider imaginary couplings  
                        ➞    may be interpreted as real-time scenario with finite chemical potential

β, κ ∈ ℝ
μ ∈ ℝ

κ ≠ 0 μ ≠ 0 Tr[P] ≠ Tr[P−1]

β ∈ iℝ

P =
Nchain

∏
i=0

Ui, Ui ∈ SU(Nc)

…i = 0 1 2 3 Nchain − 1 NchainU0

UNchain

U1 U3

S = − (β + κe−μ) Tr[P] − (β + κeμ) Tr[P−1]



The Polykov chain in SU(3) (2/2)
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Reduction of the Haar measure leads to a more complicated situation for the thimbles

• We can reduce the Haar measure of SU(3) 

• To analyze the Lefschetz thimble via the reduced model we need to complexify both angles: 
                              ➞    four-dimensional space — simple to do but no nice figures 

• We conduct simulations directly for SU(3) — but the Haar measure serves as  guide for the design of 
the regularization (next slide) 

dU =̂ dϕ1dϕ2 sin2 ( ϕ1 − ϕ2

2 ) sin2 ( ϕ1

2
+ ϕ2) sin2 (ϕ1 +

ϕ2

2 ), ϕ1, ϕ2 ∈ [−π, π]

P =̂ diag (eiϕ1, eiϕ2, e−i(ϕ1+ϕ2))



Construction of regularizations in SU(3)
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Can we generalize these regularizations to SU(N) gauge theories?

• The regularized weight function  has the only zeros on the boundary of the domain of integration 

- Boundary of the domain of integration:     

- Zeros of the Haar measure:                           

• At these points, the  trace of the Polyakov loop takes three different values 

✴ Regularization for SU(3) Polyakov chain model 

ρ + R

(ϕ*1 , ϕ*2 ) ∈ ± π × [−π, π] or [−π, π] × ±π

ϕ*1 = − ϕ*2 /2, ϕ*1 = − 2ϕ*2 , ϕ*1 = ϕ*2

Tr[P±1] = eiϕ*1 + eiϕ*2 + e−i(ϕ*1 +ϕ*2 ) ∈ {−1, − 1 + 2i, − 1 − 2i}

R[P] = r q(+1) q(−1),
q(σ) ≡ (Tr[Pσ] + 1) (Tr[Pσ] + 1 + 2σi) (Tr[Pσ] + 1 − 2σi),



Application of CL to SU(3) PLM (1/3)
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Wrong convergence when only gauge cooling is applied — slow decay
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Compact/sharp density when regularization is applied — correct convergence
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Extraction of expectation values for original model
Application of CL to SU(3) PLM (3/3)
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Conclusion



• Consider SU(N) Yang-Mills theory on an  lattice with the Wilson action 

• ‘Global’ regularization:     global drift term, extensivity leads to problems 

• ‘Local’ regularization:    correction procedure becomes complicated 

  

N3
s × Nt

ρR = ρ + R →

ρR = ∏
x

(ρx + Rx) →

Extensions to actual lattice gauge theory

34

Locality and extensivity of the weight function and regularization

ρ = exp(−S) = ∏
x

e− 1
g2 ∑μ≠ν ρμνTr[Ux,μν − 1] =: ∏

x

ρx

  Ideas / work in progress: 

• We develop a mathematical connection between thimbles and CL that allows us to design kernel 
transformations that admit similar Lefschetz thimbles 

• Restricting the ‘sampling space’ for CL with prior information from Dyson-Schwinger equations 

• Conceptional: find a mathematical formulation of the criterion of correctness in terms of thimbles



Conclusion
• Complex Langevin often fails due to the slow decay of the drift density 

• Criterion of correctness is linked to the structure of the Lefschetz thimbles  

• We cure the wrong convergence issues by regularizing the weight function: 

• Design regularizations to obtain a compact thimble structure 

• We obtain corrections from prior knowledge using Dyson Schwinger equations

35

  Solution to the complex cosine model and the SU(N) Polyakov loop model 
  Extension to lattice Yang-Mills theory is work in progress 

Goal: application to real-time Yang-Mills theory

→
→

That’s the key word for the next talk



Thank you for your attention!
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Backup: Translating back to SU(N)

• The translation is straightforward but there are obvious and subtle differences 
                                        ➞    we want to apply methods to actual gauge field theories 

• Some important aspects: 

1. Lefschetz thimbles are gauge-dependent, this leads to a manifold of thimbles for each stat. point 

2. Gauge cooling does not fully eliminate complexified gauge freedom 

3. Gauge freedom does not… 

• … map the Polyakov chain to a one-link model 

• … reduce the Haar measure as it does not affect the SU(2) symmetry

37

Why do we even test regularizations for SU(2)?


