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Ongoing work with Dénes Sexty

Based on Lampl and Sexty, 2023, arXiv:2309.06103

Related projects:

- Alvestad, Larsen and Rothkopf, 2023, arXiv:2211.15625v2
- Alvestad, Rothkopf and Sexty, 2023, arXiv:2310.08053

2/ 25



1 Real time evolution in QFT

A simple test case

Machine learning kernels
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What is real time evolution useful for?

Calculating time-separated correlators

Useful for both equilibrium and non-equilibrium systems:

- Phase transitions
- Baryogenesis
- Gravitaional wave production
- Heavy-Ion collisons
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The Schwinger-Keldysh formalism in equilibrium

⟨𝑂(𝑡)⟩ = Tr{𝜌0𝑈(0, 𝑡)𝑂𝑈(𝑡, 0)}

𝜌0 = 𝑒−𝛽(𝐻0−𝜇𝑁)

Tr{𝑒−𝛽(𝐻0−𝜇𝑁)}
= 𝑒𝜇𝑁𝑈(−𝑖𝛽, 0)

Tr{𝑒𝜇𝑁𝑈(−𝑖𝛽, 0)}

𝑁 = 0

⟨𝑂(𝑡)⟩ = Tr{𝑈(−𝑖𝛽, 0)𝑈(0, 𝑡)𝑂𝑈(𝑡, 0)}
Tr{𝑈(−𝑖𝛽, 0)}

5/ 25



Approaches to evaluating the contour

Perturbative expansion

Naive lattice approaches lead to strong sign problem

Mitigations: combine Lattice with:

- Classical-Statistical
- Schwinger-Dyson
- Contour deformation
- Complex Langevin
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The complex Langevin equation

Stochastic differential equation

- Action 𝑆
- Degrees of freedom 𝜙
- Gaussian noise 𝜂 with Var(𝜂) = 2
- Langevin time 𝜏

𝜕𝜙
𝜕𝜏

= −𝛿𝑆
𝛿𝜙

+ 𝜂

𝜙𝜏+𝜖 = 𝜙𝜏 − 𝜖𝛿𝑆
𝛿𝜙

∣
𝜏

+
√

𝜖𝜂
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Real time evolution in QFT

2 A simple test case

Machine learning kernels
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0+1-dimensional scalar field theory

ℒ = (𝜕𝑡𝜙(𝑡))2 + 𝑚2𝜙2(𝑡) + 𝜆
4!

𝜙4(𝑡)

Conceptionally and computationally simple

Also known as: anharmonic oscillator

Analytically solvable by diagonalizing the Hamiltonian

Observables on the real leg:
- Unequal-time correlator: oscillations
- Equal-time correlator: constant

2 parameters: mass 𝑚 = 1 and coupling 𝜆 = 24 → strongly coupled
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Lattice setup

asymmetric triangle contour

skew = 0.1%

𝑁𝑡 = 40

adaptive step size 𝜖

maximum 𝜖 = 10−5
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The anharmonic oscillator in action

Lampl and Sexty, 2023, arXiv:2309.06103

11/ 25



Wrong convergence

Lampl and Sexty, 2023, arXiv:2309.06103
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Real time evolution in QFT

A simple test case

3 Machine learning kernels
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What is a kernel?

Any arbitrary holomorphic function

𝐾(𝜙, 𝜏, ...) with 𝐾 = 𝐻𝑇𝐻

Does not change result (in real Langevin)

Can change convergence behavior

Optimal kernel can fix wrong convergence

(in complex case)

Constant kernel ⟹ 𝛿𝐾
𝛿Φ = 0

𝜕Φ
𝜕𝜏

= −𝐾 𝛿𝑆
𝛿Φ

+
√

𝐾𝜂 + 𝛿𝐾
𝛿Φ

Δ𝜙𝑖 = −𝜖(𝐻𝑇)𝑗
𝑖𝐻𝑘

𝑗
𝜕𝑆
𝜕𝜙𝑘 +

√
𝜖𝐻𝑗

𝑖 𝜂𝑗
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Learning optimized kernels with gradient descent

Introduced in Alvestad et al., 2022, arXiv:2211.15625

Optimize kernel according to a loss function 𝐿

Δ𝐾𝑖𝑗 = −𝑟 ⋅ 𝜕𝐿(Φ, 𝐾)
𝜕𝐾𝑖𝑗

Descend kernel along loss function gradient with rate 𝑟

Use trained kernel to solve system
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Which loss function to use?

Ideally some function that quantifies

”wrongness of results”

Incorporate as much prior information as

possible (2211.15625)

Or: Use unitarity norm 𝑈(Φ) as cheap proxy

(2310.08053, 2309.06103)

Evaluated on next-step field Φ′

𝑈(Φ) =
𝑁

∑
𝑖

ℑ𝔪(𝜙𝑖)2

𝐿(Φ, 𝐾) = 𝑈(Φ′(Φ, 𝐾))

= 𝑈(Φ + ΔΦ(Φ, 𝐾))
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How to train your kernel

Kernel starts out at identity

One training step consists of:

- Themalization for 10 − 100 Langevin time
- Averaging the loss function gradient for 0.1 − 1 Langevin time
- Applying the gradient to the kernel with learning rate 𝑟 = 10−4 − 10−3

- Rescale kernel such that sum of squares is fixed

Repeat for 106 − 107 times

Reset Φ every ∼ 105 training steps to combat runaway feedback effects

Only 𝑁𝑡 = 20 since gradient descent is very expensive
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Kernel training in action
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What does the kernel learn?

Lampl and Sexty, 2023, arXiv:2309.06103
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Kernel improves real time extent considerably

Lampl and Sexty, 2023, arXiv:2309.06103
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Limit of constant kernel is 𝑡 ≈ 2

Lampl and Sexty, 2023, arXiv:2309.06103
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Machine learned kernels in the 1+1-dimensional case

Same approach in 1 + 1 dimensions

Correct results up to 3.2 real time

Alvestad, Rothkopf and Sexty, 2023,

arXiv:2310.08053
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Next step: Linear kernel

Field dependent kernel with 𝑁3 parameters:

𝐾𝑖𝑗(Φ) = 𝑎𝑘
𝑖𝑗𝜙𝑘

More parameters and field dependence should lead to better results (?)

Overfitting with simple loss function (?)

Easily expandable to polynomial kernels
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Neural net: When polynomial kernels are not enough

Neural network can approximate any function (Universal approximation

theorem)

Holomorphicity and universal approximation at the same time are difficult

(if not impossible) Voigtlaender, 2012.03351

Other considerations:

- 𝑁 inputs (Φ), 𝑁2 outputs (𝐾)
- Different possible topologies
- Different activation functions (can lead to non-universality)

𝑁 ∶ C𝑛 → C𝑛×𝑛 ∶ Φ ↦ 𝐾 = 𝑁(Φ)
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Conclusion

Kernels can improve real time extent

Constant kernels hit barrier at 𝑡max ≈ 2

Linear field dependend kernels should reach higher times

Using neural networks is possible, but brings problems
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