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Machine learning is the new playground

many concepts in ML are familiar to theoretical and computational physicists 
 
o  neural networks, say, are systems with many fluctuating degrees of freedom
 
o  training – or learning – is a minimisation process, typically 
    achieved with stochastic gradient descent (SGD)

o  ML parameters are usually contained in matrices  

keywords: stochastic dynamics, random matrix theory, 
  non-equilibrium evolution, thermalisation, …  
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picture of a playground



Example: Dyson Brownian motion and SGD

o  weight matrices are updated using stochastic gradient descent 

o  stochastic matrix dynamics: random matrix theory

o  Coulomb gas and eigenvalue repulsion: implications for training accuracy

o  dependence on learning rate (step size) over batch size (size of fluctuations)
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This talk: GenAI using Diffusion Models
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https://encord.com/blog/diffusion-models/

https://encord.com/blog/diffusion-models/


Diffusion models

stochastic dynamics to generate images (configurations)
o  start with data set of images
 
o  make the images more blurred by applying noise (forward process)

o  learn steps in this process
     … and then revert it

o  create new images from noise

5https://theaisummer.com/diffusion-models/

https://theaisummer.com/diffusion-models/


Prior and target distributions

o   in pictures: 𝑝! is target (non-trivial), 𝑝" is the prior (easy)
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Outline

o   some comments on diffusion models and stochastic quantisation

o   application in lattice scalar field theory in two dimensions

o   correlations: higher 𝑛-point functions and cumulants

o   application to sign and complex action problem: complex Langevin dynamics

o   summary and outlook
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Diffusion models and stochastic quantisation

o   images/configurations are generated during backward process 

o   stochastic process with time-dependent drift and noise strength

o   write   such that

o   then 
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Diffusion models and stochastic quantisation

o   then

o   very familiar to (lattice) field theorists

o   stochastic quantisation (Parisi & Wu 1980)

o   path integral quantisation via a 
      stochastic process in fictitious time

o   stationary solution of associated Fokker-Planck equation
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Diffusion models and stochastic quantisation
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similarities and differences:

ü  SQ: fixed drift, determined from known action
     constant noise variance (but can be generalised using kernels)
     thermalisation followed by long-term evolution in equilibrium

ü  DM: drift and noise variance time-dependent, learn from data 
     evolution between            , many short runs



Diffusion models and stochastic quantisation

o   diffusion models as an alternative approach to stochastic quantisation

configurations

theory:

e.g. HMC

configurations
stochastic quantisation

diffusion model, forward process

diffusion model, 
backward process
“denoising”

random 
configurations
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Score matching: learn the drift for backward process

o   one degree of freedom, variance-expanding scheme:          

o   time-dependent distribution   describes forward and backward process

o   so-called score            is not known, needs to be “learnt” during forward process
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Score matching: learn the drift for backward process

o   one degree of freedom, variance-expanding scheme:          

o   time-dependent distribution   describes forward and backward process

o   so-called score            is not known, needs to be “learnt”

o   loss function

o             approximates score, vector field learnt by some neural network

o   introduce conditional distribution              initial data



Score matching: learn the drift

o  loss function

o  diffusion process                               easily solved     

o  conditional distribution

o   and hence

o   loss function 

tractable, computable



Diffusion model for 2d 𝜙! scalar theory

o   32# lattice, choice of action parameters in symmetric and broken phase
o   training data set generated using Hybrid Monte Carlo (HMC)

o   variance expanding DM trained using 
      U-Net architecture

generating configurations:
o   broken phase
o   “denoising” (backward process) 
o   large-scale clusters emerge, as expected

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1

15L Wang, GA, K Zhou, JHEP 05 (2024) 060 [2309.17082 [hep-lat]]

https://arxiv.org/abs/2309.17082


Diffusion models

ok, so it seems to work: many questions

o   correlations: how are they destroyed and rebuilt?
o   usually attention is on two-point function or variance 
o   higher 𝑛-point functions contain interactions in field theory
o   essential for applications in field theory, correlations = interactions
o   focus on moments and cumulants

discuss forward and backward process in more detail

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1

GA, D Habibi, L Wang, K Zhou [2410.21212 [hep-lat]] 

https://arxiv.org/abs/2410.21212


Diffusion models in more detail

o   forward process

o   backward process

two main schemes
o   variance-expanding (VE): no drift
o   variance-preserving (VP) or denoising diffusion probabilistic models (DDPMs):
           linear drift  
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score

noise profile



Solve forward process

o   forward process

o   initial data from target ensemble

o   solution

o   second moment/cumulant/variance
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assume first moment vanishes
 



Higher-order moments and cumulants

o   moments      and cumulants            : straightforward algebra
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variance-expanding 
scheme: no drift

higher cumulants 
conserved!



Proof to all orders

o  generating functionals: average over both noise and target distributions

 moments    cumulants

o   noise average

o   full average

o   cumulant generator
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Proof to all orders: cumulants 

o   cumulant generator

o  2nd cumulant

o   higher-order 
     cumulants

21

ü  

ü  



Toy model: two-peak distribution 

o   test the predictions in simple zero-dimensional model

o   sum of two Gaussians

o   exactly solvable, all even cumulants non-zero, time-dependent score is known analytically

o   quickly show higher-order cumulants, see paper for details
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4th, 6th, 8th cumulant with drift (DDPM)
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4th, 6th, 8th  cumulant without drift
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Higher-order cumulants

o   with drift (DDPM): cumulants go to zero, distribution becomes normal

o   without drift (variance-expanding):  higher-order cumulants are conserved,
      up to numerical cancellations, required between moments which increase in time

o   initial conditions for backward process taken from normal distribution

o   score has higher-order cumulants encoded: cumulants are reconstructed



Comparison between schemes

expectation values at the end of the backward process

ü variance-expanding scheme slightly outperforms variance-preserving scheme
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Two-dimensional scalar fields

extension to scalar fields trivial: each lattice point is treated separately

o   forward

o   backward

o  two-point function

o   moments    independent of 



Generating functionals

o   moment generating

o   cumulant generating

o   higher-order cumulants

full path integral 
with sources

variance
preserving

variance 
expanding



2nd, 4th, 6th cumulant without drift
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Comparison: trained diffusion model

expectation values at the end of the backward process

excellent agreement
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https://ml4physicalsciences.github.io/2024/


Sign problem, complex Langevin dynamics 
and diffusion models 

Diaa Habibi, GA, Lingxiao Wang, Kai Zhou

Lattice 2024 2412.01919 [hep-lat] and in preparation

https://arxiv.org/abs/2412.01919


Stochastic quantisation: complex actions

o   stochastic quantisation not limited to real-valued distributions/actions
o   extend Langevin process to complex manifold: complex Langevin dynamics (Parisi 1981)

o   convergence not guaranteed, no general solution of Fokker-Planck equation
o   a posteriori justification (GA, Seiler, Stamatescu 2009, Nagata, Nishimura, Shimasaki 2016)
 
o  many talks at this meeting

33



(Complex) Langevin dynamics

o   observables

o   Langevin equation and drift

o   Fokker-Planck equation (FPE)

o   what if weight is complex? drift is complex, FPE only formal

o   complexify degrees of freedom

34



Complex Langevin dynamics

o   complexify degrees of freedom
o   Langevin equation and drift

o   take real and imaginary part

 
o  FPE

o   observables
35



Complex Langevin dynamics

o   FPE

o   cannot be solved, non-integrable

o   formal justification

o   relation (cannot be verified in practice)

o   instead, a posteriori criteria for correctness

GA, E Seiler, IO Stamatescu, Phys. Rev. D 81 (2010) 054508 [0912.3360]
GA, F James, E Seiler, IO Stamatescu, Eur. Phys. J. C 71 (2011) 1756 [1101.3270] 



Complex Langevin distributions

o   FPE

o   want to describe/understand this distribution
o further sampling
o criteria for correctness
o (modify process)

o   use diffusion model, learn from CL generated data
o   diffusion model does not care what the origin of the data is
o   note: no solution to the sign problem if CL fails

real noise:



Gaussian model (solvable)

o   complex quadratic action

o   CL equations

o   here FPE can be solved

o   with coefficients

o   solution satisfies

o   note: score ≠ CL drift

introductory lectures 
1512.05145 [hep-lat])

https://arxiv.org/abs/1512.05145


Flow from CL and from score: Gaussian model 
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Trained diffusion model: Gaussian case
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Quartic model

o   simple model with quartic coupling

o   detailed analysis in GA, Giudice, Seiler, Annals Phys. 337 (2013) 238 [1306.3075]

o   CL converges, provided     , dynamics is contained inside a strip,

o   this follows from CL drift

o   FPE can be solved (approximately) using double expansion in Hermite polynomials

o   train diffusion model on CL generated data 
41



Quartic model

42

solution of FPE using double expansion in Hermite 
polynomials

GA, Giudice, Seiler, Annals Phys. 337 (2013) 238 [1306.3075]

solution obtained by sampling 
from trained diffusion model
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Trained diffusion model: quartic model
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complex Langevin drift score from trained diffusion model
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Comparison

cumulants in the quartic model

expectation values at the end of the backward process

note: diffusion model learns from CL data, not the “exact” value



Trained diffusion model: quartic model
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very different processes

complex Langevin:
o non-integrable drift
o noise in real direction
o attractor at origin

diffusion model:
o integrable score
o noise in both directions
o saddle at origin

different Fokker-Planck equations

yet same distributions are created for data generation

have obtained access to 



Summary and outlook

o   diffusion models offer a new approach for ensemble generation to explore in LFT
o   learn from data: requires high-quality ensembles
o   close relation to stochastic quantisation
o   moment- and cumulant-generating functionals
  higher 𝑛-point functions important in LFT applications

o  apply to complex actions/complex Langevin: DMs learn elusive real-valued distributions
o  in progress: apply to theories with fermions 

  auxiliary field bosonic models, or DMs learn presence of fermions implicitly
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BACKUP SLIDES
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2nd cumulant without drift

o   variance-expanding scheme

48

0.0 0.2 0.4 0.6 0.8 1.0

t

0

5

10

15

20

∑
2
/∑

ex
ac

t
2

°
1

0.0 0.2 0.4 0.6 0.8 1.0

ø

0

5

10

15

20

∑
2
/∑

ex
ac

t
2

°
1

0.6 0.8 1.0
0.0

0.5

forward backward



2nd cumulant with drift (DDPM)

o   variance-preserving scheme
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