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Handout version*

• This handout is a slightly modified version of the talk given at SIGN 2025. Some 
additional comments have been added in order to give context to the slides shown. 

• Slides marked with an asterisk (*) were not part of the original talk.



The sign problem in lattice QFT

• In Euclidean space, . 

•  can be complex: 

• QCD at non-zero density or with a  term, real-time QFTs, etc. 

• Usual lattice approach (importance sampling) not applicable.

ρ(x) ∝ e−SE(x)

ρ(x)

θ

⟨𝒪⟩ = ∫ dx𝒪(x)ρ(x)
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The sign problem in lattice QFT*

• We are mainly concerned with the sign problem as it appears in lattice quantum 
field theory. In particularly, we are interested in Quantum Chromodynamics (QCD) 
at non-zero (baryon) density, as well as the real-time evolution of quantum field 
theories. In both cases, the density  in the path integral is not real and non-
negative, leading to the sign problem. This means that  cannot be interpreted as a 
probabilistic weight and the conventional approach, based on importance 
sampling, fails. 

• As a possible solution, we consider the so-called complex Langevin approach, 
which is introduced in the following.

ρ
ρ



• For Euclidean theory in  dimensions, introduce fictitious time direction . 

• Interpret theory as statistical system coupled to heat reservoir and evolving in . 

• Obtain target theory  in equilibrium limit .

d τ

τ

ρ(x) ∝ e−S(x) τ → ∞

Basics of Stochastic Quantization
Parisi, Wu ’81; Damgaard, Hü ffel ’87
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equilibration ρ(x)ρ0(x)
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• The idea of stochastic quantization is to interpret the system of interest as a statistical one, which 
evolves in some fictitious time dimension .  

• Ideally, one would like to evolve some initial density  in  and obtain the target density  in 
the equilibrium limit For a real action , this actually works under rather mild assumptions. 

• One way to realize this evolution is discussed on the next slide: the -evolution of the dynamical 
degrees of freedom  is given by the Langevin equation, which is a stochastic differential equation 
consisting of a deterministic part (the drift term) and a stochastic part (the noise). The -evolution 
of the corresponding probability density , in turn, is determined by the associated Fokker-Planck 
equation. The more interesting question, however, is what happens if the action  is complex.

τ

ρ0 τ ρ = e−S

τ → ∞ . S

τ
x

τ
ρ

S

Basics of Stochastic Quantization*



Fokker-Planck equation

∂ρ(x, τ)
∂τ

=
∂
∂x ( ∂

∂x
+

∂S(x)
∂x ) ρ(x, τ)

Langevin equation

dx
dτ

= −
∂S(x)

∂x
+ η(τ)

Langevin and Fokker-Planck equations

drift term

Gaussian noise: 
⟨η(τ)⟩ = 0

⟨η(τ)η(τ′￼)⟩ = 2δ(τ − τ′￼)

probability density: 
lim
τ→∞

ρ(x, τ) ∝ e−S(x)
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Langevin equation

dx
dτ

= −
∂S(x)

∂x
+ η(τ)

Fokker-Planck equation

∂ρ(x, τ)
∂τ

=
∂
∂x ( ∂

∂x
+

∂S(x)
∂x ) ρ(x, τ)

Langevin and Fokker-Planck equations

drift term

Gaussian noise: 
⟨η(τ)⟩ = 0

⟨η(τ)η(τ′￼)⟩ = 2δ(τ − τ′￼)
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lim
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The complex Langevin equation

• Complexify . 

• * probability density .  

• Does it obey                                                                                                            ?

x → z = x + iy

⟹ P(x, y, τ)

lim
τ→∞ ∫ dxdy 𝒪(x + iy)P(x, y, τ) = ∫ dx𝒪(x)ρ(x)

Klauder ’83; Parisi ‘83

Complex Langevin equation

dz
dτ

= −
∂S(z)

∂z
+ η(τ)
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The complex Langevin equation*

• The complex Langevin approach — like a few other attempts of solving the sign 
problem — is based upon the complexification of the underlying field manifold. In 
this case, we consider a single real variable  and its complex analog . 

• Indeed, the -evolution of  produces a probability density  in the complex 
plane, which — ideally — would reproduce the desired expectation values. 

• Notice that, while not discussed in this talk, the complex Langevin equation can be 
extended to realistic theories like lattice models or gauge theories.

x z

τ z P(x, y, τ)



• Simulate the process 

• Generate configurations to produce equilibrium distribution for averaging.

Discretized evolution equation

zn+1 = zn−ε
∂S(z)

∂z
z=zn

+ εηn

Discretized evolution equation

zn+1 = zn−ε
∂S(z)

∂z
z=zn

+ εηn

Complex Langevin simulation

: step sizeε

: real Gaussian noiseηn
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Complex Langevin simulation*

• The previous slide shows one (rather simple) way of discretizing the complex 
Langevin equation, with the discrete (Langevin) time step denoted as . Notice the 
square-root of  multiplying the Gaussian noise. This update equation can now be 
used to generate configurations.

ε
ε



• Example: . 

• Complexification can introduce runaway 
trajectories leading to diverging simulation. 

• Overcome via adaptive step-size control.

S(z) =
z4

4

z → z −
∂S(z)

∂z
ε + εηz → z −

∂S(z)
∂z

ε + εη

Drawbacks and pitfalls
Runaways

Aarts et al. ’10
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z → z −
∂S(z)

∂z
ε + εη



• One of the drawbacks of the complex Langevin approach is the existence of 
unstable trajectories, along which the evolution would diverge in the absence of 
noise. 

• In general, the noise term kicks the trajectory off runaway directions, but they might 
nonetheless bias results if too much time is spent far away from the real axis. In 
order to reduce discretization effects, one commonly employs an adaptive step-size 
algorithm to reduce the step size  when the drift term becomes large, which also 
partially cures the runaway problem. Either way, the presence of runaways can be 
detected relatively straightforwardly (for instance by keeping track of the distance 
to the real axis).

ε

Drawbacks and pitfalls*
Runaways



Wrong convergence
Drawbacks and pitfalls

• Complex Langevin simulations can give wrong 
results despite converging properly. 

• Example: ,  . 

• Correct convergence only for  .  

• In general, we do not know if results are correct.

S(z) =
λ
4

z4 λ = e
iπl
6

| l | ≤ 2
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Okamoto et al. ’89



• On the previous slide, we consider a simple example and compare , computed 
both analytically and in a complex Langevin simulation. As this comparison shows, 
the complex Langevin equation can sometimes produce incorrect solutions despite 
converging to a proper equilibrium distribution. 

• The main problem with this is that — in general — we cannot tell whether the results 
we obtain in a complex Langevin simulation are correct, since we cannot compare 
to exact results or to other methods. One thus would like to have some correctness 
criterion that can distinguish between correct and incorrect results (more on that 
later).

⟨z2⟩

Drawbacks and pitfalls*
Wrong convergence



How to restore correct convergence?

• May introduce kernel into Langevin equation: 

• For real dynamics: leaves stationary solution of Fokker-Planck equation unchanged. 

• Alters the probability distribution .P(x, y, τ)

Kernelled complex Langevin equation

dz
dτ

= −K(z)
∂S(z)

∂z
+

∂K(z)
∂z

+ K(z)η(τ)
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Parisi, Wu ’81; Sö derberg ‘88



How to restore correct convergence?*

• In the case of a real action, one can introduce a so-called kernel  into the Langevin 
equation, which (again, under mild assumptions) leaves the resulting equilibrium 
distribution  intact, but might improve convergence properties. 

• For complex actions, however, the kernel can affect the distribution  in the complex plane, 
which might be desirable if correct convergence cannot be achieved without a kernel. 

• While the kernel can be -dependent in general, we choose it to be constant here for 
simplicity. 

• On the next few slides we demonstrate the effect of a simple kernel on the distribution of  
in the complex plane, using a very simple example.

K(z)

e−S

P

z

z



• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

• Want: Correctness criterion.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

z → z − εK
∂S(z)

∂z
+ εK η

Complex Langevin evolution with a kernel

z → z − εK
∂S(z)

∂z
+ εK η
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m = 0



• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

• Want: Correctness criterion.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

z → z − εK
∂S(z)

∂z
+ εK η

Complex Langevin evolution with a kernel

z → z − εK
∂S(z)

∂z
+ εK η

10

m = 1



• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

• Want: Correctness criterion.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

z → z − εK
∂S(z)

∂z
+ εK η

Complex Langevin evolution with a kernel

z → z − εK
∂S(z)

∂z
+ εK η

10

m = 2



• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

• Want: Correctness criterion.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

z → z − εK
∂S(z)

∂z
+ εK η

Complex Langevin evolution with a kernel

z → z − εK
∂S(z)

∂z
+ εK η

10

m = 3



• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

• Want: Correctness criterion.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

z → z − εK
∂S(z)

∂z
+ εK η

Complex Langevin evolution with a kernel

z → z − εK
∂S(z)

∂z
+ εK η

10

m = 4



• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

• Want: Correctness criterion.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

z → z − εK
∂S(z)

∂z
+ εK η

Complex Langevin evolution with a kernel

z → z − εK
∂S(z)

∂z
+ εK η

10

m = 5



• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

• Want: Correctness criterion.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

z → z − εK
∂S(z)

∂z
+ εK η

Complex Langevin evolution with a kernel

z → z − εK
∂S(z)

∂z
+ εK η

10

m = 6



• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

• Want: Correctness criterion.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

z → z − εK
∂S(z)

∂z
+ εK η

Complex Langevin evolution with a kernel

z → z − εK
∂S(z)

∂z
+ εK η

10

m = 7



• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

• Want: Correctness criterion.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

z → z − εK
∂S(z)

∂z
+ εK η

Complex Langevin evolution with a kernel

z → z − εK
∂S(z)

∂z
+ εK η

10

m = 8



• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

• Want: Correctness criterion.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

z → z − εK
∂S(z)

∂z
+ εK η

Complex Langevin evolution with a kernel

z → z − εK
∂S(z)

∂z
+ εK η

10

m = 9



• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

• Want: Correctness criterion.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

z → z − εK
∂S(z)

∂z
+ εK η

Complex Langevin evolution with a kernel

z → z − εK
∂S(z)

∂z
+ εK η

10

m = 10



Complex Langevin evolution with a kernel*

• Indeed, the kernel affects the distribution in several ways. Most strikingly, the distribution 
follows the direction noise coefficient  (dashed lines). This leads to the interesting 
observation that for  the distribution collapses to a line, namely the relevant 
Lefschetz thimble of the theory. One may guess that in that case one may obtain correct 
results, which is demonstrated on the next slide, where the observable  is shown as a 
function of the kernel parameter .  

• Indeed, there are large plateaus in m, one of which lies around . On this plateau, 
complex Langevin results agree with the exact ones. On the other plateaus, however, 
results are incorrect.

K
m = 10

⟨z2⟩
m

m = 10
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z → z − εK
∂S(z)
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B𝒪(z)(Y) = ⟨Θ (Y − |z |) L𝒪(z)⟩

• Formal argument for correctness relies on fast decay of , such that one can 
integrate by parts without appearance of boundary terms. 

• Can measure boundary terms:  

P𝒪

Boundary terms
Aarts et al. ’11; Scherzer et al. ‘19
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Boundary terms*



Boundary terms*

• The formal proof of correctness of the complex Langevin approach relies on the absence 
of boundary terms such that one can integrate by parts. In practice, one may measure 
boundary terms via the observable given on the previous slide. 

• In particular, one plots the boundary terms  as a function of the cutoff  and looks for a 
plateau. If such a plateau appears at a non-vanishing value or if no signs of a plateau can 
be found at all, this implies that the simulation results are incorrect. Examples for 
boundary terms for different values of  are shown on the next slide. There, we also see 
that the converse statement is not true: the absence of boundary terms does not ensure 
the correctness of results. An explanation for this is provided in the slides that follow.

B Y

m
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• Integration paths connecting zeros of  . 

• Example:  . 

• Three independent cycles,  is the relevant one. 

• Vanishing boundary terms only imply that result is 
linear combination of integration cycles: 

ρ(z)

ρ(z) = e− z4
4

γ1
ω1

ω2

ω3 ω4

ω5 ω6

Integration cycles

ω1

ω2

ω3 ω4

ω5 ω6

⟨𝒪⟩CL =
3

∑
i=1

ai ⟨𝒪⟩γi
Salcedo, Seiler ’19
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Witten ‘11



Integration cycles*

• The absence of boundary terms does not guarantee the correctness of results, which is 
especially true in the presence of a kernel. An explanation for this (in one-dimensional 
theories) was put forward by Salcedo and Seiler, in that the absence of boundary terms only 
implies that the complex-Langevin results are a linear combination of observables 
computed along different integration cycles, .  

• An integration cycle is an integration path in the  complex plane that either connects two 
distinct zeros of  or is a closed non-contractible loop (the latter do not play a role in this 
talk). The integral over the real line, which is the one we are interested in, is only one such 
integration cycle, but in general we should expect other cycles to contribute as well. For the 
particular model considered, there are (up to inversion) six possible integration cycles, only 
three of which, however, are linearly independent.

⟨𝒪⟩γi

e−S



• Kernel can favor certain cycles. 

• Fits are unreliable in the presence of  
boundary terms. 

• Only proven for a single degree of freedom.

Kernel and integration cycles

⟨𝒪⟩CL =
3

∑
i=1

ai ⟨𝒪⟩γi

13

Salcedo ’93



Kernel and integration cycles*

• Owing to the simplicity of the models considered here, we may actually compute the 
coefficients  via a least-squares fit, since we can compute the  exactly. The result of 
this fit as a function of  is shown on the previous slide. Indeed, we find  close to 

, while on the other plateaus different linear combinations of cycles become 
relevant. Away from the plateaus the fits become unstable, namely precisely for those 
kernels where there are boundary terms, which perfectly confirms the theorem by Salcedo 
and Seiler. Notice that  always vanishes for this choice of kernel.  

• So far, however, the theorem has been proven only in one dimension. Here, we thus study 
its validity in two dimensions from a numerical point of view.

ai ⟨𝒪⟩γi

m ai = δi1
m = 10

a3



Higher dimensions*

• The generalization of the complex Langevin equation to higher dimensions is 
straightforward. On the next few slides, we repeat the steps discussed before in a 
simple two-dimensional model. Notice that, while the kernel can be a matrix in 
general, we choose it to be proportional to unity here. We show the distributions of 
the  (which coincide) in the complex plane for different kernel parameters , as 
well as the -dependence of the observable  (other observables look similar).  

• The conclusions are also similar to the one-dimensional case, the main difference 
being that the two smaller plateaus are absent in two dimensions.

zi m
m ⟨z2

1⟩



• Consider . 

• Example: , .

S(z1, z2) =
λ
4

(z2
1 + z2

2)2

λ = e
5iπ
6 K = e− iπm

24

zi → zi − εK
∂S(z1, z2)

∂zi
+ εK ηizi → zi − εK

∂S(z1, z2)
∂zi

+ εK ηi

Higher dimensions

14

m = 0
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• . 

•  has 8 zeros but there are only  
2 independent integration cycles. 

• Check validity of 

• Example: , .
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(z2
1 + z2

2)2

e−S(z1,z2)
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24

Integration cycles in higher dimensions
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⟨𝒪⟩CL
?= a1 ⟨𝒪⟩γ1

+ a2 ⟨𝒪⟩γ2



Integration cycles in higher dimensions*

• While the generalization of the concept of integration cycles to higher dimensions 
is not straightforward mathematically, one can still compute the number of 
independent cycles for a certain class of theories. In the particular model we 
consider on the previous slides, there are two independent cycles. This is a non-
trivial finding, as it implies that the two-dimensional theory is, in fact, somewhat 
simpler than its one-dimensional counterpart.  

• As before, we can fit the coefficients  and we obtain perfect agreement with the 
Salcedo-Seiler theorem.

ai



• Consider more general interactions:  

 . 

• Number of independent integration  
cycles depends on .

S(z1, z2) =
λ
4

(z4
1 + z4

2 + a z2
1z2

2)

a

Breaking  symmetryO(2)
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Breaking  symmetry*O(2)

• If we introduce a tunable coupling parameter  into the action, the number of 
independent integration cycles depends on  in a crucial way: One observes a 
‘weak-coupling’ region where there are nine independent cycles, as well as a ‘strong-
coupling’ region in which there are only two. This could imply that more 
sophisticated theories in higher dimensions might actually be simpler in terms of 
their relevant integration cycles.

a
a



•  . 
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+ εKi ηizi → zi − εKi

∂S(z1, z2)
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 a

m1 = 10 m2 = 10
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More general kernels*

• We aim at investigating which/how many of the nine independent cycles in the weak-
coupling region could contribute to a simulation. To this end, we introduce more general 
kernels (still diagonal but now with different elements). Their effect on the distributions of 

 and  (which now no longer need to be equal) is shown on the previous slide. 

• Finally, we compute the corresponding coefficients . The plot on the next slide shows the 
contribution of the different cycles as a function of the pair of kernel parameters  
and for each such pair we show two columns, the left (right) one corresponding to the real 
(imaginary) parts of the . Different colors correspond to different coefficients and 
positive (negative) contributions are shown in the positive (negative) vertical directions. We 
find that for the sets of kernels considered, only the first four cycles are relevant.

z1 z2

ai
(m1, m2)

ai
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Sampling different integration cycles
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• Evidence for validity of Salcedo-Seiler theorem beyond 1D. 

• Kernel can favor certain integration cycles. 

• Complex Langevin can be extended to theories of physical interest. 

• Also there, kernels are possible. But how to choose them? 

• What about integration cycles in realistic theories?

Conclusions & open questions
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arXiv:2412.17137



Summary & Outlook

20

• CL promising approach for systems with a complex-action problem.

• Major drawbacks: Runaways (adaptive step size) and wrong convergence. 

• Wrong convergence can in principle be fixed by kernels. 
• How to construct them? 
• How to verify convergence?

• Outlook: Role of integration cycles in realistic theories?



Contact*

• For any questions/discussion, please do not hesitate to contact the author via 
michael.mandl@uni-graz.at .
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