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QOutline

Context:
@ Dual representation with staggered fermions: effective theory of lattice QCD
@ Allow simulations at finite temperatures and densities
@ Strong coupling expansion re-introduces sign problem, limiting range of validity

@ Hamiltonian formulation based on dual representation may solve sign problem in
quantum simulations

Content of the talk:
Monte Carlo simulations in dual representation including O(/3?)

SC-LQCD on the Quantum Annealer

Hamiltonian approach to strong coupling lattice QCD and its generalizations

L~ oSN -

Towards quantum computing: strategies and prospects



Dual Representation of Lattice QCD

@ For "standard" QCD lattice action il T T T
(staggered fermions, Wilson gauge action) B ‘_._i 1 T
e AR
@ But: change order of integration: 8l meEa | ] e | Er
e expand in 8 = % all I “QD % =}£_ﬂ }_ {
o gauge links {U,(x)} first I </ LT g
o afterwards the quarks 7-1g|=| I‘I_Jl_i El J:J' |‘| —
— no fermion determinant [ B
=T [ { e I
@ “Dual” representation: via color singlets! = I |‘|L3l I Ry %I‘I |
o At 8 = 0: link states are mesons and IR | Bz 1
) o I o | [ |
baryons [Rossi, Wolff, NPB 248 (1984)] ‘¢ 1+ ¢ i1 R

e At B > 0: color singlets may include
gluons [Gagliardi, U, PRD 101 (2020)]

[ )
@ Dual degrees of freedom: ] °
@ monomers my: quark on site, weights for quark mass |=u "

dimers k,,(x): mesons hoppings (quark-anti-quark pairs)
fermion world-lines f,(x): quark hoppings, weights I n
depend on chemical potential, form closed loops

2-dim. example of configuration
in terms of dual variables

e plaquette occupation numbers np, nip:
expansion order from gauge action



Sign Problem of Dual Representation

Sign of a configuration C due to geometry of fermionic loops:
H O'(K), O' _ ( 1)1+w 0)+N_(2) H 77

@ -1 for each fermion Ioop, each backward hopping (spatlal or temporal), each
winding number (anti-periodic bc); product of staggered phases 7),,(x)
@ at strong coupling: mild residual sign problem A; ~ 1075:
e baryons are heavy (almost static)
o color singlets closer to the physical states (hadrons)
e no fluctuations from gauge fields (integrated out)!
@ Sign problem in regime g = g% < 1 mild enough to study full phase diagram

000048
0.002808
000042
0.002496
000036
0.002184
000030 0.001872

000024 0.001560

000018 0.001248
000012 0.000936
0.00006 0.000624
0.00000 0.000312

—~0.00006 0.000000

30 07 08

as . H

Af at strong coupling as a function of mg Af in chiral limit as a function of 8



The phase diagram in the strong coupling limit

Chiral and nuclear phase boundary obtained via Monte Carlo:

@ at finite quark mass, the tri-critical point turns into Z, critical end point

@ chiral and nuclear first order lines also match at finite quark mass
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Goal: What does the Phase Diagram including [ look like?

Phase Diagram in the Strong Coupling Regime and Chiral Limit:
@ Via reweighting in 8 from 8 = 0: O(3) corrections for SU(3)

[Langelage, de Forcrand, Philipsen & U., PRL 113 (2014)]
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Questions of interest:

@ Do the nuclear and chiral transition split?

@ Does the tri-critical point move to smaller or larger p as [3 is increased?



Dualization of full lattice QCD

Combined Taylor expansion in the reduced gauge coupling ,é = % =L and

2
~ .. . . &
quark mass myg, giving rise to dual variables:
np, Np, de, d¢ and my:

np+n 2
SONYSEND O | £ | Poom | (o S

{"ga"p} P
{de,dg,my}

Evaluate 1-link integrals in G in terms of generalized Weingarten functions

Decouple those integrals via a choice of orthogonal projectors:

Multi-indices p are new dual degrees of freedom: decoupling operator indices

o~

Collect operators into a local tensor Tf’dmpd that depends on participating dual
degrees of freedom Dy = {my, di,+p, N, v, Fx, o

Final dual partition function:

np+fip “qéu,OfX,u 2/, )mx x X
Z(Bsiqiine) = Y o1 ) Hﬂ - @)™ e p,)
”p'”p' ke'(ke + |fe|)! my!

{k{e”;}e";:"i} {"iu}” =(x, 1) x

[G. Gagliardi & W. U. PRD 101, (2020) 034509]

Truncation at O(3%): allow for plaquette occupations (n,, B,) € {(1,1),(2,0),(0,2)} 7



Monte Carlo for TN-Representation via Vertex Model

@ Each tensor can be transformed into a vertex:
DOI pj per bond cast into integers

vertex weight depends on directions 'L
@ Number of distinct vertices (SU(3), d = 4) o
- 0 T 7 3 ©& T
limit oB°%) OB oB%) O(8%) e ><,>‘L}_:FF{,~;>\«,»,}*...
all 221 3485 51125 681013 &L
chiral 176 2960 44672 607792 IX
quenched 1 1 25 137 s

@ compare to 8-vertex model for SC U(1),
d = 2 [U. Wenger PRD 80 (2009) 071503]

@ Some vertices have negative weight, but
most configurations are positive

@ Use heatbath algorithm for to modify
vertices along closed contours; has been
parallelized; Worm algorithm not yet
applicable beyond O(3)

[P. Pattanaik & U. PoS Lattice (2023)]

@ At ug = 0: crosschecked with HMC

@ Lattice Setup: 8°x4, 12°x4 and 16° x 4, SC, and O(B), O(B?) for
B8 =10.0,...,1.0] and at T = 0.8,0.85,0.9,0.95,1.0, all for chiral limit




Sign Problem of Vertex Formulation

@ In addition to the geometric fermionic sign cgeom(C), also the tensors T /vertices
vx can be negative: 0tot(C) = Ttensor(C)ogeom(C), Ttensor(C) =[], vx

@ This particularly worsens the sign problem for O(3?), where non-trivial decouling
operator indices are present

o Additional tensor sign results in larger statistical errors for O(8%) up to § <1

@ Finite size scaling for O(?) remains difficult
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Results: Baryon Density and Chiral Condensate

@ All results relative to the location of the strong coupling tricritical point:
TN, =0.85, usy2, = 1.99
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Results: Baryon Susceptibility, Chiral Susceptibiltiy

@ All results relative to the location of the strong coupling tricritical point:
Tnfy =085, ugyl, =1.99
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Results: Average Plaquette

@ All results relative to the location of the strong coupling tricritical point:

TTCP

NLy =085, usy’, =1.99
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@ Average plaquette and its susceptibiltiy: no imprint of the chiral/nuclear

transition
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Phase Diagram in the Strong Coupling Regime 5 > 0

mg-Dependence of Nuclear Transition:

Phase Diagram in Chiral Limit: e
=0.0
aTyp 12 T | B=0.3 ‘ il
. 1.0 806 m“ “ i
sx L, i B=09 \ ‘H“” H ‘ i \‘H
R B AP
. . aay,
08 chiral 2" order 2y TCP 1 N e seve“
0.6 . |
chiral
1%t order
04 .
p=0.0 -
02 E:gg . nuclear 4
=0.9 : 1% order
0 L L L L L L L L 0.4 0.6 0.8 1.0
0 0.2 04 06 08 1 1.2 1.4 1.6 1.8 amq

@ weak (3-dependence of transition
@ taking into account the S-dependent te(mg) at fixed T ~0

renormalization of aT and ayp @ consistent with findings of other

@ tri-critical point depends only results (Meanfield, 3d-effective
slightly on 8 theory)

@ location of nuclear CEP challenging

13



Prospects for the strong coupling expansion

@ Higher orders O(3") with n > 2 may not be required for § <1

@ Continuum physics expected to emerge above 5 ~ 2N,
— Large plaquette occupation numbers (np, 7ip) cannot be neglegted.

@ For 8 > 1: instead of Taylor expansion, a character expansion would have to be
established (for staggered fermions: so far only a posteri identified):

Hexp %mup+ﬂu;) = HZuA([ﬁ/Nc)XA(U,,) , ®)
c SU(3), 2x2
P P 07] © HMCi=05 —- aip)
. 0(B2) — a2(p)
but with staggered fermions on top 0.6{ ~== 0"
@ Recursive relations for SU(3) via 3-step Lucas 05

Polynomials, resulting in
Xa(Up) = 3 (7o) THUI P TH{U ™
np,fip

oy ()= D cx(mo, p)ux(5/3).
{A}r

neglecting all A = (Ar,...) with A > r Taylor vs. character expansion

@ Sign problem would kick in at larger 8

14



Quantum Simulations on a Quantum Annealer

@ Quantum Annealer (D-Wave): array of qubits modeled by quantum spin glass
Hising, with annealing process given by transverse external field:

H(s) = —A(t) Y ol + B(t)Hising
@ Minimization: find optimal binary solution vector x
X2 = x" Wx + pl|Ax + sz = x"Qx + C,
with QUBO (Quadradtic Unconstrained Binary Optimization) matrix:
Q=W+p (ATA+diag (2b"A)), C=pb"
with weight matrix W, constraint (A,b) and the penality factor p

20-ps anneal with 100-us pause at s=0.35

=%
N log(2am,)
e
@ ~2log(y)
0 20 40 60 80 100 120
e o
5-us anneal
I~ 5 P -2p
I
)
= o o
= P
@,
0 1 2 H 4 s
~——

Annealing profile given by B(t)
Problem Graph implementing QUBO matrix 15



D-Wave Simulations for Strong Coupling LQCD

For SC-LQCD: Demonstrated that it implements importance sampling

[J. Kim, T. Luu, U. PRD 108 (2023)]
Particularly useful at low T, where classical algorithms are expensive
Large volumes addressed via histograms h obtained from D-Wave for 2 x 2
sub-lattices with fixed boundaries, iterating in parallel through sub-lattices

Histograms approximate well true distribution for p =1,

Use hybrid stategy with Metropolis-Hastings Paccept = e~ Snew+Soid fold.
to improve on validity rate and acceptance rate

distinct confs

Number of histogram entries per Comparing results from D-Wave and

boundary condition Worm algorithm
[J. Kim, T. Luu, U. arXiv:2412.11677]

@ Results at O(8) for SU(3) are underway, Metropolis-Hastings still feasible.

16



Gate-based Quantum Simulations for SCE: Preliminaries

@ Quantum annealers not flexible enough to address important aspects of a
Hamiltonian

@ Usual Hamiltonian approach to quantum simulations of LGTs: KS-Hamiltonian

_1 1 i
His = | & Z EeEg-i-E Z Tr[21 — P, + PJ]

£c€Links pEPlaquettes
(Ao = 0, operators in electric basis, Hilbert space must be truncated, different
charge sectors )

@ Hamiltonian derived from SCE at fixed order: Occupation number basis,
everything discrete from the start
— Hilbert space remains finite-dimensional

@ No further truncation of Hilbert space needed
@ Grassmann constraint and Gauss's law respected implicitly

@ So far: no actual quantum simulations yet, emulation via giskit

17



Euclidean Continuous Time Limit

Continuous time (CT) methods:

make time direction continuous: t € [0, 5],
sample Z(3) in terms of decay probabilities
[Beard & Wiese, PRL 77 (1996) 5132]  (for AFHM)

For Strong Coupling LQCD:

Introduce bare anisotropy 7 such that £ = Z—j #1:

Non-perturbative result: £(v) ~ rky? + %, k =0.781(1)

[de Forcrand, Vairinhos, U., PRD 97 (2018)]
Define the continuous Euclidean time limit (CT-limit):

Nr =00, &7 300, aT =50 kT(y,Nt), T =7 fixed

average sign, aT=1.5
0.0014 T

only one parameter T ol §?§§E
non-perturbative factor x directly in CT-limit!  °*'f S L
0.0008 -
baryons are heavy: Af ~ 107° ooo0s |
in continuous time limit N, — oo: ZZZS: /
baryons become static o ,_;0:/‘ T

1IN

= finite density sign problem absent!

Af vanishes for N; — oo (a; — 0)

18



From Meson Occupation Numbers to Hamiltonian (N; = 1)

Correspondence between discrete and continuous time:

Parity
(0)=+1 = o= PRSI SR

@ alternating dimer chains (top) and \ [

RTINS S [ Dimer Chains

meson occupation numbers m 0 = =

241

(bottom): T .

03

Discrete Time

=
I
|

@ multiple spatial dimers become

. . . . €0) =41 — il Time
resolved in single spatial dimers, | tt ] e
. . (W=-1 eson tates
oriented consistently due to even-odd ! o =
.
ordering @ .
o

@ conservation law: for mesons connecting (x, y)

me—mytl & my—mFl

Derive Hamiltonian via diagrammatic expansion of Zcr = lim  Zy_(7)
~¥,Nr =00
@ express the partition function as series in inverse temperature % = %:

Zor (T ) = Try [FHNRBIT) 5 — % (B3 +3708) K =

(%,7)

L:')X

iNg



Quantum Hamiltonian: Creation and Annihilation Operators

Creation J* and annihilation operators J~ = (J*)7:
@ contain the matrix elements (m;|1jmz) with . = (0[1]2) =1,
or = (11)1) = 3.

0 0 0 0 00 0 O
oW 0 0 0 0 0 0 O
[ 0 or 0 0 oo | 0 000
= 0 0 o 0 » Y= 0 0 0 o0
0 0 I o0
0 0 0 -1

@ local Hilbert space per site: |h) = |m,b) € Hy = [0, 7, 27, 37; BT, B~]

@ block-diagonal structure due to vanishing commutator [H, N] = 0
Interpretation (generalized to N. > 3):

@ pion current is conserved

@ Pauli saturation on the level of quarks as hadrons have fermionic substructure
—  |m) bounded from above, m — s =m — N—
—  particle-hole symmetry, N; + 1-dim. |rrep of SU(2):

N/ N o NNe e o Neny a_oay Ne(Ne+2)
K=Y (7Y, =X (007, Jy= =t =T d
! 2 ( + ) > T ( ) i= I 4
Y N, Y Ne (Ne +2) | N s »
s =e[Fe) ) - HEERR) e

20



Quantum Monte Carlo for N; = 1 Hamiltonian, Results

QMC is a continuous time Worm algorithm:

@ Temporal locations uniformly distributed according to a Poisson process:
P(At) = et At €[0,1], Ais the “decay constant” for pion exchange

Baryon Mass amg = & a,m,
Baryon Density Baryon Susceptibiity BTeRTe
1 — T 12 ———— § ! !
Wang Landau Mome Carlo
aT=1.20 —— ——

Extrapolation to CT-Limit |

v amg for SU(3) CT ——

4T-0.90 2; égg PN A —
aT=085 =085 101 R from AE for u(ag

08 - aT=0.80 T=0.80 1 from AE for SU(3) —e— |

from Snake Algorithm

041 1 22 . A
4 “r 1 2 L L L L L
0 0.2 0.4 ne na 1
02 / 1 0.4 T
P ol 1 ; g
05 055 06 065 07 075 08 085 05 055 06 065 07 075 08 085 :
g ang
0.2
@ Baryon mass could be unambiguously determined et =00
—8— app=0.3
. nﬁ:os
@ meson pole masses can be extracted from the : =15

Euclidean time correlators for various spin kernels

@ pion mass M, sensitive to chiral transition

[Klegrewe, U. PRD 102 (2020)]
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Phase Diagrams from N; = 1 Hamiltonian LQCD (Chiral Limit)

From Quantum Monte Carlo / Density of States Method:

@ obtain baryonic observables and phase diagrams to high precision
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Gate-based Quantum Computing: Circuits

To identify the gate set required for quantum simulations (Nf = 1):

@ Qubitize the Hamiltonian H in mesonic and baryonic sector independently:
|h), = |m) @ |b)_, 2 qubits for mesons, 1 control qubit for baryons

@ Partition Hmeson into mutually commuting even/odd parts and decompose each
into Pauli strings (with ¢; depending on ¥ and 07 ):

= ZHXE + ZHm Heeyo = Z aPi, Pie{l,X,Y, Z}?C

@ Four families of Pauli strings, e.g. Fam; = {(IX)«(YY)y, (IY)x(YX)y +x <> y }

@ —g T
diag_fam!
- iag_fam
o Rz (—52%) PRz (—322) &
2V3 T 2V3 T
q T Rz (=352%5) T
q:

Top: four qubit quantum gate corresponding to Famj.
Bottom: diagonal gate of the above unitary, decomposed into elementary operations.

[M. Fromm, O. Philipsen, U., Ch. Winterowd, EPJ Quantum Technol. 11, 24 (2024)] 23



Gate-based Quantum Computing: Emulation

@ Trotterized time evolution in 14+1 dimension, L = 4

-&
[R)g = Im; b)o {

3 == : :
I o ) SN T
s N, o8l NN .
N\, 'Y \‘\
* Banald ‘ AN T
ir ~ o6l .
/‘/\‘\ » . s A .~
. AN = ~o ~_
0sf . . Zoaf . N ~_
N ~. = N 3
(Y N ~
A . * -~ D .
of Se RN P 02 > ~e
~_ - . ~_
Lol GRS S . ~_, L
05 . . . . . X . . _ N
0 1 2 3 4 5 6 7 8 0 05 1 15 2
t/a t/a
MesonicJ;, J>, exact results versus simulated Wave function overlap for various 5
with Trotter step size §; = 0.4 with Trotter step size §; = 0.2

[M. Fromm, O. Philipsen, U., Ch. Winterowd, EPJ Quantum Technol. 11, 24 (2024)] o



Partition Function: N; > 1

Local Hilbert space Hy via canonical sectors B € [—Ng, —Ng + 1, ..., Ng]:

@ Hjy quickly grows with N, general formula: [U., Lattice 2014]:

Nc

Ng
al(2Ng + a)! Bug/T
Zstat(Ne, Nr) B;VfH (Nt +a+ B)(Nf +a— B)!e

o coefficient encodes number of hadronic states 0, for gauge group SU(3):

o Np=2: d=[1,20,50,20,1] = 92
o Ny =3: d=[1,56,490,980,490, 56, 1] = 2074

Every state of the local Hilbert space can be described by a set of charges:
@ Be{—Ng...Ne}, 1€ {—Ne,...N:}, UDe{0,...N.} for Np =2
0 Ki,Kr € {—Ne,...N.}, Se€{0,...N:.} additionally for Ny = 3

25



Quantum Hamiltonian for Ny = 2

The Hamiltonian has N;? contributions, one for each pseudoscalar meson:

@ Partition function for Ny = 2:

Zer (T, ps, puz) = Try

~ 1 ~ ~_ ~
H= 2 Z Z (Jgh?JQh? + JQi:;Jgiv}_;)

(X.y) Qie{nt, =, my,mp}

|:e(7:L+NBHE+NINI)/T:| h e H,

@ For the transition h1 — b2, the matrix elements (h1|Q;|h2) of .Alz)[i are determined
from Grassmann integration and diagonalization
@ Only non-zero which are consistent with current conservation of all Q;,

and turn out to be positive!
(Note: that requires the Euclidean continuous time limit, while for finite N there

remain negative weights for N > 1)
o Again, [H,N] = 0, however [H,Nj] # 0

26



Hadronic States for N; = 2

Transitions according to J, quantum numbers B =0, [ = —3,..

.3, m=0...

o

27



Hadronic States for N; = 2

.3/2,m=0...3

Transitions according to J*, quantum numbers B =1, | = —3/2,..

and B=2,1=0, m=0

|
e

\
i
i
v
<
I
ainla

=,
1
E

3
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Preliminary Results for Ny =2 CT-Worm simulations

N¢ = 2 allows to study SC-LQCD at both finite baryon and isospin density:
@ enlarged ug — i — T phase diagram accessible

@ Mean-field predicts: both the nuclear and chiral transition split up into two
transitions as p; > 0, first indications from MC simulations: with increasing 1/,
the plateau between the two transitions increases (lower T required)

w=12
Isospin Density

Baryon Density

Interaction Energy

21 0.24

14
0.20 21

-03

s 6

5 6
3 o

Contour plots of nuclear, isospin and chiral observables in the pug-T plane for p; = 1.2

New physics expected:

@ single baryons can coexist with pions — pion exchange between nucleons

@ pion condensation competes with nuclear phase 2



Prospects for Quantum Simulations for N; =2

@ Hilbert space 92-dimensional, 9 qubits required

@ Too complex to determine minimal set of commuting families of Pauli strings

@ With qubits: high gate depth for single Trotter step

@ Time evolution of baryonic sectors mix (meson exchange for B = 0, £1)

7
10° . . . . &y 10
#Cnot
: * [ gate depth
10°F +
‘ A
FPY + ¢+ 6| 1
= 10%F + 10
+
*
10t L4 + Quantum Chemistry [van den Berg et al] |3
N ¢ Quantum Chemistry (this work)
Py A TLattice QCD at 8=0, N; = 1,2
10° 10°E =
10t 102 10% 10* 10° 10° uo ey yn

Number of strings Py

Sector Unitary

Number of partitions as a function of the number ~ Number of entangled CNOT gates, gate depth

of Pauli strings in baryonic sectors (Bx, By)

4Py

@ Less complexity: qudits (d-level systems):
each U an elementary operation

o With trapped ions, e.g. **Ca: 8 levels S

@ Entangled gate count: nn, Nf =2, d > 2:
O(10°) qubits — O(10?) qudits

812

[M. Ringbauer et al., Nature Physics 18, 1053 (2022)]30



Prospects for Quantum Simulations for § > 0

At finite temperature: spatial plaquettes are suppressed over temporal plaquettes

In the continuous time limit: only temporal plaquettes survive

113 | 216 1 1 1
143 216 1 . 1 1

Temporal plaquettes are of same order as meson exchange, but also allows to
couple to baryons! (J* still block-diagonal for Ny = 1):

VM,0 0 0 0 0 0 1 2 1
VL VM1 0 0| 0 0 VMO = —, VM1= —, Vma2= -,
Jr = 0 VT vm,2 O 0 0 ’ 3g ! 3g ’
- 1 0 VL 0 0 0 ? 1 1
0 0 0 0]v O v = —, ve = —.
0 0 0 0|0 € €

General SCE: Enlarged but still finite Hilbert space:
(anti-) quarks dj, d; = 0,... Nc vary independently: 16-dimensional for N. = 3

Still NN interaction J*J™, requiring 4 x 4 qubit coupling

Caveat: Spatial plaquettes would enlarge Hilbert space further, no longer NN 31



Conclusions

Summary:

Dual representation that is in principle not truncated in § established,
caveat: it re-introduces the sign problem gradually with

TCP remains invariant when comparing O(3) and O(5?%)
Nuclear transition at O(3) has small S-dependence
Hamiltonian formulation based on CT-limit sign problem-free for Ny =1,2,3

Matrix elements for the creation and annihilation operators J*
have now been determined for Ny = 2 and for O(3)

First exploratory Ny = 2 QMC simulations at ug > 0, u; > 0 (lower T required)

@ Strong coupling LQCD on a quantum annealer allows very low T

Gate-based quantum computing feasible for Ny = 1, not yet feasible for Ny = 2
(huge QC resources required)

If TCP remains invariant for higher orders in 3: CEP also exists in the continuum!
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