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Introduction

Goal: A cluster algorithm for S = 1/2 Quantum Link Models

We got: A new type of cluster algorithm with more applications

J. Pinto Barros, TB, M. Kristc Marinkovic, arXiv:2402.01039
TB, M. Kristc Marinkovic, J. Pinto Barros, in preparation
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Worldline Formulation

⟨O⟩β =
Tr

(
Oe−βH

)
Tr (e−βH) =

∑
C worldline configuration

O (C) p (C)

0 particles 1 particle 2 particles L particles

. . . . . .
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Cluster Algorithms

Sample worldline configurations with MCMC with non-local updates
→ Very efficient in simulating theories for which they have been formulated

Form Clusters ⇒

U. Wolff, Phys. Rev. Lett. 62, 361 (1989)
N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 87, 160601 (2001)
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Meron Cluster Algorithm

We will be extending the algorithm that simulates the Hamiltonian

H = −t
∑

i

c†
i+1ci + c†

i ci+1 + 2
(
c†

i ci − 1
2

) (
c†

i+1ci+1 − 1
2

)
for a chain of spinless fermions

S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
S. Chandrasekharan, J. Cox, J. C. Osborn and U.J. Wiese NPB 673 405 (2003)
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Meron Cluster Algorithm

Z = Tr(e−βH) =
∑

i

⟨ni| e−βH |ni⟩
Trotter

≈
∑

i

⟨ni|
(
e− β

N Hevene− β
N Hodd

)N

|ni⟩

=
∑

n0,n1,n2,n3,...

⟨n0| e−ϵHeven |n1⟩ ⟨n1| e−ϵHodd |n2⟩ ⟨n2| ... |n0⟩

S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
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Meron Cluster Algorithm

Add additional degrees of freedom: break-ups

S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
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Meron Cluster Algorithm

Place breakups with probabilities according to the plaquette weight

S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
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Meron Cluster Algorithm

Place breakups with probabilities according to the plaquette weight ⇒ Clusters

S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
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Meron Cluster Algorithm

A cluster flip gives a configuration with equal weight
→ Always accepted

S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
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Meron Cluster Algorithm

A cluster flip gives a configuration with equal weight
→ Always accepted

Flip each cluster with p = 1
2

→ Almost uncorrelated with the previous configuration
→ Ergodic

There is still a sign problem left to address

S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
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Meron Cluster Algorithm

A cluster flip gives a configuration with equal weight
→ Always accepted

Flip each cluster with p = 1
2

→ Almost uncorrelated with the previous configuration
→ Ergodic

There is still a sign problem left to address

What if we only want a subset of configurations?

S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
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The canonical ensemble

Fix the number of fermions:

• Flipping cluster i adds ni fermions
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The canonical ensemble

Fix the number of fermions:

• Flipping cluster i adds ni fermions

• We need ∑
flipped clusters

ni = 0

• Each valid set must be generated with equal probability
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Restricting to the canonical ensemble

Calculate the number of possibilities iteratively:

Ai(N) = Ai−1(N) +Ai−1(N − ni)

Use them to determine the probabilities to flip:

pi = Ai−1(Ni − ni)
Ai(Ni)

with N0 = 0 and Ni =
{
Ni−1 + ni if cluster i got flipped,
Ni−1 otherwise.
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Restricting to the canonical ensemble

Calculate the number of possibilities iteratively:

Ai(N) = Ai−1(N) +Ai−1(N − ni)

Use them to determine the probabilities to flip:

pi = Ai−1(Ni − ni)
Ai(Ni)

with N0 = 0 and Ni =
{
Ni−1 + ni if cluster i got flipped,
Ni−1 otherwise.

Runtime: O (nclusters max(
∑
ni)) = O(βV 2)
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The Schwinger Model in the Hamiltonian Formalism

Discretized Schwinger model with a Thirring term and staggered fermions:

H =
∑

n

−t
(
c†

nUncn+1 + h.c.
)

+ 2t
(
n̂n − 1

2

) (
n̂n+1 − 1

2

)
︸ ︷︷ ︸

gauged spinless fermions

+m(−1)nc†
ncn︸ ︷︷ ︸

mass

+ g

(
En + θ

2π

)2

︸ ︷︷ ︸
gauge term with

topological θ angle

Here, Un is a raising operator for the gauge field En living on the links

Tensor Networks: e.g. M.C. Bañuls, K. Cichy, J.I. Cirac and K. Jansen - JHEP11 (2013) 158
Quantum Simulations: e.g. O. Kaikov, T. Saporiti, V. Sazonov, M. Tamaazousti - arXiv:2407.09224 (2024)
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The Schwinger Model in the Hamiltonian Formalism

This has an Abelian local symmetry [Gn, H] = 0

Gn = c†
ncn + (1 − (−1)n)/2︸ ︷︷ ︸

charge ρn

−En − En−1︸ ︷︷ ︸
∇En

= ρn − ∇En

We focus on the sector Gn |ψ⟩ = 0, so states that obey Gauss’s law
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A Cluster Algorithm for the Schwinger Model

Idea: Sample QLMs as a subset of Meron Cluster Algorithm configurations

Alternative Cluster Algorithm approach with emergent gauge symmetry:
J. Frank, E. Huffman, S. Chandrasekharan - Physics Letters B (2020)
D. Banerjee, and Emilie Huffman - Phys. Rev. D 109, L031506 (2024)

Institute for Theoretical Physics
High Performance Computational Physics 17/26



Mapping Fermion Paths to QLMs

Take Fermion Configuration
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Mapping Fermion Paths to QLMs

Place break-ups as usual
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Mapping Fermion Paths to QLMs

Translate to charge representation

⇒ Clusters flip between all charged and neutral
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Mapping Fermion Paths to QLMs

Calculate links with Gauss’s law
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Mapping Fermion Paths to QLMs

Calculate links with Gauss’s law

⇒ Fields only change when crossing a charged cluster
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Mapping Fermion Paths to QLMs

Order neighboring clusters into a tree
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Use Correlated Cluster Algorithm

1. Count number of ways to get each field value L from
bottom up

Ai(L) =
∑
j∈Ci

(Aj(L) +Aj(L− li))

2. Calculate flip probabilities from the top down

pi =
∑

j∈Ci
Aj(L− li)

Ai(Li)

Local terms in the Hamiltonian can also be added

Ai(Li) = ai (Li)
∑

j∈G(i)

Aj (Li) + a′
i (Li)

∑
j∈G(i)

Aj (Li − li)
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Simulating the Schwinger Model

• Possible only if we have a finite number of field values

• Different formulations (QLM, TLM, Zn) are possible

• For S possible link values, this is scales with O(LβS2)

→ Efficient algorithm even with a θ-term
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Generalizations of this approach

The prerequisites for this method are:
• The configurations can be mapped onto a subset of an

existing cluster algorithm
• The dependence of the clusters is non-cyclic
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Solving Sign Problems with Meron Cluster Algorithms

The Meron Cluster Algorithm solves the fermionic sign problem:
• Flipping certain clusters (Merons) changes the sign of the configuration
• All configurations with a Meron cancel

S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
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Solving Sign Problems with Meron Cluster Algorithms

The Meron Cluster Algorithm solves the fermionic sign problem:
• Flipping certain clusters (Merons) changes the sign of the configuration
• All configurations with a Meron cancel

⇒ Avoid Merons with accept/reject step when updating the break-ups
S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
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Sign problems in Correlated Cluster Algorithms

The configuration where the meron is flipped could now be illegal

• Use improved estimator for the sign: σ̄ = 1
N

∑
legal flips σ

• Will likely help a lot, but it could still give zero or negative contributions
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Sign problems in Correlated Cluster Algorithms

• This formulation of (1+1)d Abelian gauge theories has no severe sign problem

• Open question: sign problems that occur when studying canonical ensembles in
higher dimensions
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Conclusion

• Correlated Cluster Algorithms extend the applicability of cluster algorithms

• They can be used to simulate Abelian gauge theories in 1 + 1d and canonical
ensembles

• They can potentially solve new sign problems

Marina Krstić Marinković Joao Pinto Barros

Thank you
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