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Abelian Gauge Theories in 1+1D with Correlated Cluster Algorithms

Develop new Monte Carlo methods

Validate other classical and quantum approaches

Explore the physics of gauge theories available on near-term experiments
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Worldline Formulation

⟨O⟩β =
Tr

(
Oe−βH)

Tr (e−βH) =

∑
ψ0...ψN−1

⟨ψ0
∣∣Oe−εH2 |ψ2N−1⟩⟨ψ2N−1| . . . |ψ1⟩⟨ψ1| e−εH1

∣∣ψ0⟩∑
ψ0...ψN−1

⟨ψ0 |e−εH2 |ψ2N−1⟩⟨ψ2N−1| . . . |ψ1⟩⟨ψ1| e−εH1 |ψ0⟩

=
∑

C worldline configuration

O (C) p (C)

0 particles 1 particle 2 particles L particles

o o o o o o
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Mechanics of the Meron Cluster Algorithm

Path integral and cluster updates ⟨O⟩β = Tr(Oe−βH)
Tr(e−βH)

U. Wolff, Phys. Rev. Lett. 62, 361 (1989)
H. G. Evertz, G. Lana, and M. Marcu, PRL 70, 875 (1993)
S. Chandrasekharan, U.J. Wiese, PRL 83 (1999)
N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 87, 160601 (2001)
S Chandrasekharan, J Cox, J C Osborn and U-J Wiese NPB 673 405 (2003)
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Wilson Formulation of U(1) Schwinger Model

H = −t
∑

n

c†
nUncn+1+h.c.+m

∑
n

(−1)n c†
ncn+g

∑
n

(
En + θ

2π

)2
+U

∑
n

c†
ncnc

†
n+1cn+1

[En, Um] = δmnUn UnU
†
n = 1

Un |En⟩ = |En + 1⟩ U †
n |En⟩ = |En − 1⟩

Gauss’ Law

Gn |ψ⟩ = 0 Gn = En − En−1 − ρn

Charge

ρn = c†
ncn − 1−(−1)n

2

Bare Vacuum

Hopping means pair creation
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An Infinite Hilbert Space at Every Link

Gauge Invariance: [E,U ] = U

Unitarity of the raising operators: UU † = 1⇒
[
U,U †

]
= 0

Infinite Dimensional Hilbert Space at every link

Can we make it finite?
• New opportunities for classical and quantum methods

• We can recover the same physics (at least at low energy)

• Explore new physical phenomena
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Quantum Link Models

Replace the link operators with spins

U→S+ = Sx + iSy, U †→S− = Sx − iSy, E→Sz = Sx + iSy

Gauge Symmetry preserved:
[
Sz, S+]

= S+ ← [E,U ] = U

Unitarity broken: S+S− ̸= 1

D. Horn, Phys. Lett. B100 (1981) 149.
P. Orland, D. Rohrlich, Nucl. Phys. B338 (1990) 647.
S. Chandrasekharan, U.-J. Wiese, Nucl. Phys. B492 (1997) 455.

QLM
• Continuum limit through D-theory

R. Brower, S. Chandrasekharan, U.-J. Wiese, PRD 60, 094502 (1999)

• Wilson limit for S → ∞ with 1√
S(S+1)

S+ → U
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Truncated Link Models

Simply truncate the electric field with a cuttoff S

U→UT , UT |E⟩ = |E + 1⟩, UT |S⟩ = 0

Gauge Symmetry preserved: [E,UT ] = UT ← [E,U ] = U

Unitarity broken: UTU
†
T ̸= 1

J.-Y. Desaules 1, A. Hudomal, D. Banerjee, A. Sen, Z. Papić, J. C. Halimeh, PRB 107, 205112 (2023)

TLM
• Unitarity preserved except near the cuttoff

• Wilson limit not directly recovered
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ZN Gauge Theories

Replace U (1) by a finite subgroup ZN

U→UZ, UZ |E⟩ = |E + 1⟩, UZ |N − 1⟩ = |0⟩

Gauge Symmetry broken: [E,UZ] ̸= UZ

Unitarity preserved: UZU
†
Z = 11

G. Magnifico, D. Vodola, E. Ercolessi, S. P. Kumar, M. Müller, A. Bermudez, PRB 100, 115152 (2019)

ZN

• Gauge symmetry broken to a subgroup

• U(1) progressively better approximated by larger and larger
subgroups
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Satisfying Gauss’ Law

For all these formulations we have a gauge symmetry [Gn, H] = 0

Gn = c†
ncn + (1− (−1)n)/2︸ ︷︷ ︸

charge ρn

−En − En−1︸ ︷︷ ︸
∇En

= ρn −∇En

Physical sector: Gn |ψ⟩ = 0
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Satisfying Gauss’ Law

What makes it hard to sample configurations?
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Gauss’ Law - Constraints on States for Spin-1/2 Links

States that satisfy Gauss’ law have an alternate positive/negative charge pattern.

We can have

We cannot have

The difference of spins of any bounded region is equal to the total charge inside.

Ex − Ey = charge between x and y

Spin 1/2 ⇒ at most total charge ±1 in any bounded region.
Higher spins follow a similar pattern.
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The Different Types of Clusters

Negative
Clusters

Positive
Clusters

Neutral
Clusters

• Winding clusters, when flipped, create charges;

• Neutral clusters represent virtual processes of creation and annihilation of charges.
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Satisfying Gauss’ in the Spin 1/2 Quantum Link Model

ETH, Institute for Theoretical Physics
High Performance Computational Physics group 16/36



Conditional Flipping

All allowed cluster flips can be sampled by inspecting a cluster tree.

We can now use the algorithm to explore different physical regimes.
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Correlated Cluster Algorithm

1. Count number of ways to get each field value L from bottom up

Ai(L) =
∑
j∈Ci

(Aj(L) +Aj(L− li))

2. Calculate flip probabilities from the top down

pi =
∑

j∈Ci
Aj(L− li)

Ai(Li)

Local terms in the Hamiltonian can also be added

Ai(Li) = ai (Li)
∑
j∈G(i)

Aj (Li) + a′
i (Li)

∑
j∈G(i)

Aj (Li − li)
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QLM Spin-1/2

Phase Transition at finite mass with Spin 1/2
Quantum Link Models
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CP Symmetry Breaking with Spin-1/2

H = −t
∑

n

c†
nσ

+
n cn+1 + h.c.+m

∑
n

(−1)n c†
ncn − 2t

∑
n

c†
ncnc

†
n+1cn+1

Small mass limit: Pair creation is common, Symmetric phase

Large mass limit: Pair creation is rare, CP -broken phase

E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and S. Montangero PRL. 112, 201601 (2014)
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CP Symmetry Breaking with Spin-1/2: Numerical Data

H = −t
∑

n

c†
nσ

+
n cn+1 + h.c.+m

∑
n

(−1)n c†
ncn − 2t

∑
n

c†
ncnc

†
n+1cn+1

Symmetric phase

CP -broken phase

χϵ =
〈(

1
L

∑
n
σzn

)2
〉

Non-universal critical mass:
mc ∼ 0.24

2d Ising critical exponents give curve collapse:
ν = 1, β = 1/8

JPB, T. Budde, M. K. Marinkovic arXiv:2402.01039
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QLM, TLM and ZN approach to the Wilson Limit

How large must the Hilbert Space per link be so that
we converge?
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Effects of Finite Hilbert Space per Link - Magnetization Squared

Square of the average electric field:
〈(

1
L

∑
nEn

)2
〉

For QLM this is the magnetization squared:
〈(

1
L

∑
n
Szn

)2
〉

L = 128, β = 20, g2a2 = 10−4, m = 0
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n
E
n
)2
〉

QLM

TLM

Zn
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Effects of Finite Hilbert Space per Link - Electric Field Dstributions

Electric Field Distributions
p(E) - Probability of finding a link with electric field value E

L = 128, β = 20, g2a2 = 10−4, m = 0

−6 −4 −2 0 2 4 6
E
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0.4

0.6

0.8

p(
E

)

TLM S = 2.0

TLM S = 8.0

Zn S = 2.0

Zn S = 8.0

S →∞
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E
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p(
E
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S →∞
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Effects of Finite Hilbert Space per Link - Helinger Distance

Helinger Distance δH(p, p′) = 1√
2

√∑
E

(√
p(E)−

√
p′(E)

)2

L = 128, β = 20, (g/t)2 = 10−4, m = 0

0 2 4 6 8
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Why QLM should not be used as truncations schemes

What is the relevant Hilbert space?

w(En) ∼ e−βgE2
n

Utrunc |E⟩ = f(E) |E + 1⟩

−10 −5 0 5 10

En

0.5

1.0

g = 0.01 β = 8

Wilson

QLM S = 5

TLM S = 5

Boltzmann weight
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Inclusion of Topological θ Term

There is no complex action problem when including
non-zero θ angle
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Inclusion of Topological θ Term: Histograms

L = 128, β = 20, g/t = 10−2, m/t = 0.1
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Taking Continuum Limit

We do not need large spins to take the continuum
limit
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Continuum Limit m/g = 0.01

Re-checking spin convergence and continuum limit extrapolation at θ = 4π
5

1/S g/t
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Inclusion of Multiple Flavors

• Gauge field still fixed up to a global constant

• Electric field can increase by more than one
in successive links

• This is a non-cyclic dependence and
correlated cluster algorithms still apply (for
properly reverse engineered Hamiltonians)
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Cluster Tree with Multi-Flavor

Reverse-engineered Hamiltonian: same break-ups for all flavors

Equivalently: same tree with 2Nf cluster states
(rather than flipped and non-flipped)
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The Multi-Flavor Reverse Engineered Model

H =

[
−t

∑
i

(
c†
i,1Uici+1,1 + h.c.

)
− 2t

∑
i

ni,1ni+1,1

] [
−t

∑
i

(
c†
i,2Uici+1,2 + h.c.

)
− 2t

∑
i

ni,2ni+1,2

]

. . .

[
−t

∑
i

(
c†
i,Nf

Uici+1,Nf + h.c.
)

− 2t
∑
i

ni,Nfni+1,Nf

]
+

∑
i,f

mf (−1)ini,f + g

2
∑

E2
i

• Preserves relevant symmetries

• Has flavor symmetry if masses are equal

• Efficiently simulated by the correlated cluster algorithm

Phase Diagram?

Continuum Limit Spectrum?
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Conclusions

• Correlated cluster algorithm can be used to study 1 + 1-d Abelian gauge theories

• QLM should not be regarded as truncations - TLM and ZN are better tailored as truncations

• Complex action problem associated with θ-angle entirely circumvented with Monte Carlo

• Pathway to explore multi-flavor physics

JPB, T. Budde, M. K. Marinkovic - arXiv:2402.01039

T. Budde, M. Kristc Marinkovic, JPB - In preparation

Marina Krstić Marinković Thea Budde
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Meron Cluster Algorithm

We will be extending the algorithm that simulates the Hamiltonian

H = −t
∑
i

c†
i+1ci + c†

i ci+1 + 2
(
c†
i ci − 1

2

) (
c†
i+1ci+1 − 1

2

)
for a chain of spinless fermions

S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
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Meron Cluster Algorithm

Z = Tr(e−βH) =
∑
i

⟨ni| e−βH |ni⟩
Trotter
≈

∑
i

⟨ni|
(
e− β

N
Hevene− β

N
Hodd

)N
|ni⟩

=
∑

n0,n1,n2,n3,...

⟨n0| e−ϵHeven |n1⟩ ⟨n1| e−ϵHodd |n2⟩ ⟨n2| ... |n0⟩

S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
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Cluster Algorithm for spinless fermions

Add additional degrees of freedom: break-ups

S. Chandrasekharan, U.J. Wiese, Phys.Rev.Lett. 83 (1999) 3116-3119
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Mapping Fermion Paths to QLMs

Take Fermion Configuration
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Mapping Fermion Paths to QLMs

Place break-ups as usual
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Mapping Fermion Paths to QLMs

Translate to charge representation

⇒ Clusters flip between all charged and neutral
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Mapping Fermion Paths to QLMs

Calculate links with Gauss’s law
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Mapping Fermion Paths to QLMs

Calculate links with Gauss’s law

⇒ Fields only change when crossing a charged cluster
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Mapping Fermion Paths to QLMs

Order neighboring clusters into a tree
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