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Forward Physics

Forward Physics at the LHC has become a very active topic

Many models predict an intense flux of BSM particles in the forward 
direction

SM predicts intense neutrino beam of all 3 flavors
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Forward Physics – Neutrinos 
Neutrinos dominantly 
produced from hadron decays

Highest energy neutrinos made 
in a lab setting

In Run 3, 11 neutrinos 
passing through FASERv, and 
O(1000) neutrino interactions
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Forward Neutrinos  

• Once a background,

• Now a signal, LHC neutrinos have
been discovered at FASER and 
SND

• Can neutrinos be used as a tool?

“…a very forward detector might be 
able to detect a sizable number of 
neutrino events...”

?
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Forward Physics 
Neutrino-nucleon cross section

One of the primary targets is the 
neutrino cross section at uncharted 
neutrino energies 

What more can we do with more 
statistics? 
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Forward Physics at the LHC :
A Neutrino Ion collider 

• TeV neutrino energy offers new
measurements in small Bjorken-
x and high-Q2 momentum 
transfer regime

• Complementary coverage as the 
proposed Electron-Ion Collider

• After boosting, the forward 
neutrino program at the LHC 
can be viewed as a neutrino-ion 
collider
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Outline

1. DIS pseudodata generation 

2. Forward Physics Experiments

3. (n)PDF fitting results

4. Phenomenology implications
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Deep-inelastic Scattering

Neutrino scattering off a nucleon can be described via
• Bjorken-x momentum fraction, ଶ momentum transfer, ఔ

Two processes of interest
• Inclusive DIS
• Charm-tagged DIS
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Pseudodata Generation

• In bins of ଶ
𝜈 can write the binned event rate as

Incoming flux

-nucleon cross-section

Experimental acceptance
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Pseudodata Generation (charm)

• In bins of ଶ
𝜈 can write the binned event rate as

Incoming flux

-nucleon cross-section

Experimental acceptance
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Neutrino Flux
• Well known that there are flux 

uncertainties in forward neutrino 
distribution

• ఓ is smallest at 

• Measurements constrain  ୢ୒

ௗாഌ

• Future measurements and modeling will 
improve on this leading to better 
predictions of the flux

2309.10417

2309.12793

11



DIS structure functions

• Double differential cross-section for (anti-)neutrino free-nucleon CC 
scattering can be expressed with structure functions, ௜

஝஺

• Structure functions contain PDF information
• Different quark flavor dependencies between NC and CC
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DIS structure functions – NC vs CC

• For illustration, with 𝑓 and diagonal CKM, structure functions for 
CC neutrino NC lepton scattering can be expressed as (with ଶ

௓
ଶ)

• CC: 

• NC:

 Best sensitivity on quark flavor separation is to use CC from FPF and 
NC from EIC 
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FPF Experiments
We consider experiments for Run 3 and HL-LHC

• Run 3 : FASERv and SND
• HL-LHC / FPF : FASERv2, AdvSND, FLArE-10, FLArE-100

• We assess the uncertainties and acceptances related with 
reconstructing ଶ

𝜈 or equivalently ℓ ℎ ℓ
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FPF Experiments - kinematic coverage

• Increase reach in and ଶ by 
almost an order of magnitude in 
each direction

• Comparable reach of the highest 
energy proposed at EIC

• Small-x region relevant for heavy 
boson production in central 
region
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FPF Experiments – systematics

• We study DIS event rate for
electron and muon neutrinos
using some benchmark
systematics

• Cut on ௛ ℓ ℓ

• We also study the impact of
charge ID and charm ID

• For FLArE-10(0), we measure 
muon charge and energy using 
FASER magnet

• Imposes angular cut
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FPF experiments – event distribution at 
FASERv2 and FLArE* 

• O(1M) total event rate  500k after acceptance cuts
• Reach x 10-3

• Lower energy thresholds at FLArE 

forbidden 
kinematics

Final state
energy cut

Same systematics
taken for FLArE10 17



FPF experiments – inclusive (charm) event rates

• ఓ dominates the event rate over ௘ by a factor of 2-3
• HL/FPF brings x more events beyond Run 3 counterpart
• Charm production is 15% of event rate  strange PDF
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Systematics uncertainties at FASERv2

• Uncertainties of  

• Dominated by energy
reconstruction

• Statistical errors
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PDF fitting strategy 

• PDF4LHC21 - proton
• xFitter with Hessian profiling with 

prior proton PDF sets

• NNPDF4.0 - proton
• Direct inclusion into global PDF fit
• Cross-check for robustness and

stability with PDF4LHC21

• EPPS21 – Tungsten Nucleus
• Nucleus correction

We take two cases

1. Statistical uncertainty only
•

2. With systematic uncertainties 
added in quadrature

*See paper for PDF fitting details
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PDF fit summary

We make lots of comparisons in the paper
• FASERv(2)

• Statistics vs systematics
• Charm ID vs no charm ID
• Charge ID vs no charge ID

• Experimental comparison
• FASERv2 vs AdvSND, FLArE10
• Total FPF data

• NNPDF
• Consistent and robust results 

• EPPS21
• Tungsten Nucleus 
• qualitatively similar to proton PDF improvement

I will highlight a few
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PDF fits – FASERv vs FASERv2

• Run 3 statistics too small to be 
sensitive to PDF fit…

• Not a surprise, let’s look at FPF
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PDF fits – FASERv2 stat vs systematics

• PDF4LHC21 includes existing neutrino DIS measurements 
• FPF still manages to improve!

• Gluon PDF unaffected  expected for a neutrino scattering experiment
• Huge improvement in strange quark 

• Consequence of charm tagging! 23



PDF fits – FASERv2 vs FLArE-10
(stat only)

• At ଶ ସ GeV2 , have somewhat comparable sensitivities
• FLArE would have sensitivity at small recoils 
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PDF fits – total FPF

• Results marginally improved with inclusion of additional data 
 Experiment with largest statistics dominates
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PDF fits –charm ID

• Small improvement in up quark PDF
• Massive improvement in strange PDF!
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PDF fits –charge ID

• Small improvement up, down 
• Negligible improvement in remaining  charge ID not important
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Phenomenology Implications
• What can we do with improved PDF 

fits from FPF data?
• With collected data, have improved 

understanding of proton quark content

• Look at quark-initiated processes of 
heavy bosons at LHC!

• Excellent complementarity

ATLAS/CMS
FPF
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Phenomenology Implications

• Baseline vs systematics (FPF*) vs stat only (FPF)
• Forward measurements improve central predictions!

• Including process relevant for ௐ , and ଶ
ௐ measurements
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Conclusions
• We calculate neutrino scattering rates at the FPF, with detection 

systematics folded in
• Neutrinos are a target and a tool for FPF

• We explore the impact that DIS measurements at Run 3 and the 
FPF can improve PDF fits

• Despite wealth of existing data, FPF still manages to improve PDF
• Greatest gains in strange content due charm tagging
• Charge ID has small improvement

• Fits from FPF can improve predictions at ATLAS

• Future work includes using gluon PDF at small-x to constrain 
production
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Thank you!
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Backup
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Faserv2 stat vs sys
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Faserv2 charm vs no charm
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Faserv2 charge vs no charge
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Faserv2 vs AdvSND
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Faserv2 vs flare
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Fpf total
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Tungsten
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Pheno pdf4lhc21
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PDF fits –FPF
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