Neutrino Non-Standard Interactions at forward neutrino experiments and beyond

FLArE Far Forward Physics working group meeting

September 5th, 2023

Zahra Tabrizi

Neutrino Theory Network (NTN) fellow

Northwestern University

Fantastic Beasts and Where To Find Them

Status of Neutrino Physics in 2023

Super-Kamiokande, Borexino, SNO

atmospheric

accelerator

MBL: Daya Bay, RENO, Double Chooz LBL: KamLAND

IceCube, Super-Kamiokande

T2K, MINOS, NOvA

 $\begin{array}{c} {}_{\rm mixing \, angles:}\\ sin^2\theta_{12} @ 4\%\\ sin^2\theta_{13} @ 3\%\\ sin^2\theta_{23} @ 3\% \end{array}$

mass squared differences: $\Delta m^2_{21} @ 3\%$ $|\Delta m^2_{31}| @ 1\%$

Future: DUNE, T2HK , JUNO

- Increase the precision
- CP-phase?
- Mass hierarchy?

Also:

Mass scale? Dirac or Majorana? Sterile?

9/5/2023

Zahra Tabrizi, NTN fellow, Northwestern U.

Questions:

- How can we systematically use different neutrino experiments for BSM searches?
- How can we connect results to other particle physics experiments?
- Can neutrino experiments probe compelling new physics beyond the reach of high energy colliders?

"Heavy" New Physics?

Affects Neutrino Interactions: Indirect Search

Observable: rate of detected events

 \sim (flux)×(det. cross section) × (oscillation)

• Coherent CC and NC forward scattering of neutrinos

• New 4-fermion interactions

- Observable effects at neutrino production/propagation/detection?
- Using "EFT" formalism to "systematically" explore NP beyond the neutrino masses and mixing

Why EFT?

- One consistent framework to probe different aspects of particle interactions;
- Constraints from different low/high experiments can be meaningfully compared;
- Results can be translated into specific new physics models;
- We can probe very heavy particles, often beyond the reach of present colliders, by precisely measuring low-energy observables;

What's the place of neutrino experiments in this program?

EFT ladder

SMEFT: minimal EFT above the weak scale

Zahra Tabrizi, NTN fellow, Northwestern U.

$\overline{\text{EFT}}$ ladder WEFT: Effective Lagrangian defined at a low scale μ ~ 2 GeV

At the scale m_Z WEFT parameters ε_X map to dim-6 operators in SMEFT

$$\begin{split} [\epsilon_L]_{\alpha\beta} &\approx \frac{v^2}{\Lambda^2 V_{ud}} \left(V_{ud} [c_{Hl}^{(3)}]_{\alpha\beta} + V_{jd} [c_{Hq}^{(3)}]_{1j} \delta_{\alpha\beta} - V_{jd} [c_{lq}^{(3)}]_{\alpha\beta1j} \right. \\ [\epsilon_R]_{\alpha\beta} &\approx \frac{v^2}{2\Lambda^2 V_{ud}} [c_{Hud}]_{11} \delta_{\alpha\beta} \\ [\epsilon_S]_{\alpha\beta} &\approx -\frac{v^2}{2\Lambda^2 V_{ud}} \left(V_{jd} [c_{lequ}^{(1)}]_{\beta\alphaj1}^* + [c_{ledq}]_{\beta\alpha11}^* \right) \\ [\epsilon_P]_{\alpha\beta} &\approx -\frac{v^2}{2\Lambda^2 V_{ud}} \left(V_{jd} [c_{lequ}^{(1)}]_{\beta\alphaj1}^* - [c_{ledq}]_{\beta\alpha11}^* \right) \\ [\hat{\epsilon}_T]_{\alpha\beta} &\approx -\frac{2v^2}{\Lambda^2 V_{ud}} V_{jd} [c_{lequ}^{(3)}]_{\beta\alphaj1}^* \end{split}$$

Falkowski, González-Alonso, ZT, JHEP (2019)

- All ε_X arise at O(Λ^{-2}) in the SMEFT, thus they are equally important.
- No off-diagonal right handed interactions in SMEFT.

We proposed a systematic approach to neutrino oscillations in the SMEFT framework!

Falkowski, González-Alonso, ZT, JHEP (2020)

We proposed a systematic approach to neutrino oscillations in the SMEFT framework!

Falkowski, González-Alonso, <u>ZT</u>, JHEP (2020)

 U_{PMNS}

Observable: rate of detected events

~(flux)×(det. cross section)×(oscillation)

$$R_{\alpha\beta}^{\rm SM} = \Phi_{\alpha}^{\rm SM} \sigma_{\beta}^{\rm SM} \sum_{k,l} e^{-i\frac{L\Delta m_{kl}^2}{2E_{\nu}}} U_{\alpha k}^* U_{\alpha l} U_{\beta k} U_{\beta l}^*$$

 ν_{μ}

We proposed a systematic approach to neutrino oscillations in the SMEFT framework!

Falkowski, González-Alonso, <u>ZT</u>, JHEP (2020)

depend on the kinematic and spin variables

$$\mathcal{M}^{P}_{\alpha k} = U^{*}_{\alpha k} A^{P}_{L} + \sum_{X} [\epsilon_{X} U]^{*}_{\alpha k} A^{P}_{X}$$
$$\mathcal{M}^{D}_{\beta k} = U_{\beta k} A^{D}_{L} + \sum_{X} [\epsilon_{X} U]_{\beta k} A^{D}_{X}$$

Observable: rate of detected events

 e_{α} e_{β} We proposed a systematic approach to neutrino oscillations in the SMEFT framework! S ⋗ v T' Falkowski, González-Alonso, ZT, JHEP (2020) S' U_{PMNS} Observable: rate of detected events ~(flux)×(det. cross section)×(oscillation) v_{μ} v_1 v_2 v_3 CC EFT NC EFT depend on the kinematic and spin variables $\mathscr{M}^{P}_{\alpha k} = U^{*}_{\alpha k} A^{P}_{L} + \sum \left[\epsilon_{X} U \right]^{*}_{\alpha k} A^{P}_{X}$ Corrections on fluxes/cross sections $\mathcal{M}^{D}_{\beta k} = U_{\beta k} A^{D}_{L} + \sum \left[\epsilon_{X} U \right]_{\beta k} A^{D}_{X}$ $\sigma^{Total} = \sigma^{SM} + \varepsilon_X \sigma^{Int} + \varepsilon_X^2 \sigma^{NP} \sim \sigma^{SM} (1 + \varepsilon_X d_{XL} + \varepsilon_X^2 d_{XX})$ $\phi^{Total} = \phi^{SM} + \varepsilon_X \phi^{Int} + \varepsilon_X^2 \phi^{NP} \sim \phi^{SM} (1 + \varepsilon_X p_{XL} + \varepsilon_X^2 p_{XX})$

FASERv

- Downstream of ATLAS at of 480 m: ٠
- Ideal for detecting high-energy neutrinos at LHC; ۲
- 1.1-t of tungsten material; ٠
- Several production modes; ۲
- Pion and Kaon decays are the dominant ones; ۲

Zahra Tabrizi, NTN fellow, Northwestern U.

Falkowski, González-Alonso, ZT, JHEP (2020)

Due to the pseudoscalar nature of the pion, it is sensitive only to axial $(\epsilon_L - \epsilon_R)$ and pseudo-scalar (ϵ_P) interactions.

Production

$$p_{LL} = -p_{RL} = 1, \quad p_{PL} = -p_{PR} = -\frac{m_{\pi}^2}{m_{\mu}(m_u + m_d)},$$

$$p_{RR} = 1, \quad p_{PP} = \frac{m_{\pi}^4}{m_{\mu}^2(m_u + m_d)^2}.$$

$$\sim -27$$

$$\pi^{-} \begin{cases} \mathbf{d} & \overset{\mathsf{W}^{-}}{\underset{\mathbf{u}}{\overset{}}} \\ \pi^{-}(\mathbf{d}\overline{\mathbf{u}}) \rightarrow \mu^{-} + \overline{v}_{\mu} \end{cases}$$

• Larger $p_{XY} \Rightarrow$ smaller ϵ !

$$\boldsymbol{\phi}^{Total} \sim \boldsymbol{\phi}^{SM}(1 + \boldsymbol{\varepsilon}_X \ \boldsymbol{p}_{XL} + \boldsymbol{\varepsilon}_X^2 \ \boldsymbol{p}_{XX})$$

Huge overall flux normalization for pion decay!

$$\langle 0 | \, \bar{d} \gamma^{\mu} \gamma_5 u \, | \pi^+(p_\pi) \rangle = i p_\pi^{\mu} f_\pi$$
$$\langle 0 | \, \bar{d} \gamma_5 u \, | \pi^+(p_\pi) \rangle = -i \frac{m_\pi^2}{m_u + m_d} f_\pi$$

Pion

decay

Falkowski, González-Alonso, ZT, JHEP (2020)

$$\begin{split} p_{LL,\alpha}^{D,cs} &= p_{RR,\alpha}^{D,cs} = -p_{LR,\alpha}^{D,cs} = 1 \,, \\ p_{PL,\alpha}^{D,cs} &= -p_{PR,\alpha}^{D,cs} = -\frac{m_{D_s}^2}{m_{\ell_\alpha}(m_c + m_s)} \simeq -1.6, \, -27, \, -5.5 \times 10^3 \qquad \text{for } \alpha = \tau, \, \mu, \, e \\ p_{PP,\alpha}^{D,cs} &= \frac{m_{D_s}^4}{m_{\ell_\alpha}^2(m_c + m_s)^2} \simeq 2.5, \, 710, \, 3.0 \times 10^7 \qquad \qquad \text{for } \alpha = \tau, \, \mu, \, e \end{split}$$

• Larger $p_{XY} \Rightarrow$ smaller ϵ !

 $\phi^{Total} \sim \phi^{SM}(1 + \varepsilon_X p_{XL} + \varepsilon_X^2 p_{XX})$

Production

Large overall flux normalization for charm decay as well!

Charm

decay

Production

kaon decay

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

Zahra Tabrizi, NTN fellow, Northw

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

Detection

DIS

Detection

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

DIS

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

- > Results are statistics dominated: $\nu_e \sim 1000$, $\nu_{\mu} \sim 5000$, $\nu_{\tau} \sim 10$
- > Optimistic systematic uncertainties: 5% on ν_e , 10% on ν_{μ} , 15% on ν_{τ}
- > Conservative systematic uncertainties: 30% on ν_e , 40% on ν_{μ} , 50% on ν_{τ}

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

- FASERv: colored bars
- Top: Conservative/Optimistic flux uncertainties
- Bottom: High luminosity LHC

- Neutrino detectors can identify flavor: 81 operators at FASERv
- New physics reach at multi-TeV
- Complementary or dominant constraints
 - \succ Results are statistics dominated: $\nu_e{\sim}1000,~\nu_\mu{\sim}5000,~\nu_\tau{\sim}10$
 - \succ Optimistic systematic uncertainties: 5% on ν_e , 10% on ν_{μ} , 15% on ν_{τ}
 - > Conservative systematic uncertainties: 30% on ν_e , 40% on ν_{μ} , 50% on ν_{τ}

Other FPF Experiments

Rates scale linearly wrt volume/Luminosity: X

diagonal $\varepsilon \sim ({}^{X_2}/_{X_1})^{1/2}$ off-diagonal $\varepsilon \sim ({}^{X_2}/_{X_1})^{1/4}$

FASERv2:
75 times more events,
~ 9 (3) times better
sensitivity for (off-)
diagonal elements;

FLArE10: 40 times more events, ~ 6 (2.5) times better sensitivity; FLArE100: 300 times more events, ~ 17 (4) times better sensitivity;

Long Baseline Accelerator Experiments

• 0.1-10 GeV energy range: cross section is much more involved!

J.A. Formaggio, G. Zeller, Reviews of Modern Physics, 84 (2012)

Quasi-Elastic scattering at the nucleon level

Kopp, Rocco, <u>ZT</u>, 2023.XXXXX

Can neutrino experiments have access to new physics at 100 TeV scale?

Conclusion:

- We can probe very heavy particles, often beyond the reach of present colliders, by precisely measuring low-energy observables using the EFT formalism.
- We have proposed a systematic approach to neutrino oscillations/scatterings in the SMEFT framework.
- We applied the formalism to FASERv experiment, however the formalism can be readily extended to other types of neutrino experiments.
- Unlike other probes (meson decays, ATLAS and CMS analyses, etc.) neutrino experiments have the unique capability to identify the neutrino flavor. This is crucial complementary information in case excesses are found elsewhere in the future.
- Future directions: Systematic model-independent global analyses of new physics in neutrino oscillation experiments with:
 - i) Power counting of EFT effects;
 - ii) Extraction of oscillation parameters in presence of general new physics;
 - iii) Comparison between the sensitivity of oscillation and other experiments.

I'M now going to open the FLOOR to questions.

9/5/2023ONSTOCK.COM

Zahra Tabrizi, NTN fellow, Northwestern U. CARTOONCOLLECTIONS.CO

WEFT Power Counting

• Dim-6:
$$\frac{\Delta R}{R_{SM}} = c \ \epsilon_X^2$$

- Dim-7: Cannot interfere with the SM amplitudes, suppressed! Liao et al, JHEP 08 (2020) 162
- Dim-8: $\frac{\Delta R}{R_{SM}} = \sqrt{c} \epsilon_8 E^2 / v^2$

Specific New Physics Models

ε_L: measures deviations of the W boson to quarks and leptons, compared to the SM prediction

 ϵ_R : left-right symmetric SU(3)_CxSU(2)_LxSU(2)_RxU(1)_X models introduce new charged vector bosons W' coupling to right-handed quarks

 $\epsilon_{s,P,T}$: In leptoquark models, new scalar particles couple to both quarks and leptons

WEFT-SMEFT Matching:

$$\begin{split} & \mathcal{L} \ \supset \ \frac{g_{L,0}g_{Y,0}}{\sqrt{g_{L,0}^{2} + g_{Y,0}^{2}}} A_{\mu} \sum_{f} Q_{f}(\bar{e}_{I}\bar{\sigma}_{\mu}e_{I} + e_{I}^{c}\sigma_{\mu}\bar{e}_{I}^{c}) \\ & + \left[\frac{[g_{L}^{We}]_{IJ}}{\sqrt{2}} W_{\mu}^{+}\bar{\nu}_{I}\bar{\sigma}_{\mu}e_{J} + W_{\mu}^{+} \frac{[g_{L}^{We}]_{IJ}}{\sqrt{2}} \bar{u}_{I}\bar{\sigma}_{\mu}d_{J} + \frac{[g_{R}^{We}]_{IJ}}{\sqrt{2}} W_{\mu}^{+}u_{I}^{c}\bar{\sigma}_{\mu}\bar{d}_{J}^{c} + \text{h.c.} \right] \\ & + \left[\frac{[g_{L}^{We}]_{IJ}}{\sqrt{2}} W_{\mu}^{+}\bar{\nu}_{I}\bar{\sigma}_{\mu}e_{J} + W_{\mu}^{+} \frac{[g_{L}^{We}]_{IJ}}{\sqrt{2}} \bar{u}_{I}\bar{\sigma}_{\mu}d_{J} + \frac{[g_{R}^{We}]_{IJ}}{\sqrt{2}} W_{\mu}^{+}u_{I}^{c}\bar{\sigma}_{\mu}\bar{d}_{J}^{c} + \text{h.c.} \right] \\ & + Z_{\mu} \sum_{f=u,d,e,\nu} [g_{L}^{Zf}]_{IJ}\bar{f}_{I}\bar{\sigma}_{\mu}f_{J} + Z_{\mu} \sum_{f=u,d,e} [g_{R}^{Zf}]_{IJ}f_{I}^{c}\bar{\sigma}_{\mu}\bar{f}_{J}^{c}. \end{split}$$

WEFT:

$$\mathcal{L}_{\text{eff}} \supset -\frac{2\tilde{V}_{ud}}{v^2} \left[\left(1 + \bar{\epsilon}_L^{de_J} \right) (\bar{e}_J \bar{\sigma}_\mu \nu_J) (\bar{u} \bar{\sigma}^\mu d) + \epsilon_R^{de} (\bar{e}_J \bar{\sigma}_\mu \nu_J) (u^c \sigma^\mu \bar{d}^c) \right. \\ \left. + \frac{\epsilon_S^{de_J} + \epsilon_P^{de_J}}{2} (e_J^c \nu_J) (u^c d) + \frac{\epsilon_S^{de_J} - \epsilon_P^{de_J}}{2} (e_J^c \nu_J) (\bar{u} \bar{d}^c) + \epsilon_T^{de_J} (e_J^c \sigma_{\mu\nu} \nu_J) (u^c \sigma_{\mu\nu} d) + \text{h.c.} \right]$$

QE matrix elements at the nucleon level

$$\begin{aligned} \langle p(p_p) | \ \bar{u}\gamma_{\mu}d | n(p_n) \rangle &= \ \bar{u}_p(p_p) \left[g_V(q^2) \gamma_{\mu} - i \frac{\tilde{g}_{T(V)}(q^2)}{2M_N} \sigma_{\mu\nu}q^{\nu} + \frac{\tilde{g}_S(q^2)}{2M_N} q_{\mu} \right] u_n(p_n) \\ \langle p(p_p) | \ \bar{u}\gamma_{\mu}\gamma_5 d | n(p_n) \rangle &= \ \bar{u}_p(p_p) \left[g_A(q^2)\gamma_{\mu} - i \frac{\tilde{g}_{T(V)}(q^2)}{2M_N} \sigma_{\mu\nu}q^{\nu} + \frac{\tilde{g}_P(q^2)}{2M_N} q_{\mu} \right] \gamma_5 u_n(p_n) \end{aligned}$$

9/5/2023

QE matrix elements at the nucleon level

$$\begin{split} \langle p(p_p) | \ \bar{u}\gamma_{\mu}d | n(p_n) \rangle &= \ \bar{u}_p(p_p) \left[g_V(q^2) \gamma_{\mu} - i \frac{\tilde{g}_{T(V)}(q^2)}{2M_N} \sigma_{\mu\nu}q^{\nu} + \frac{\tilde{g}_S(q^2)}{2M_N} q_{\mu} \right] u_n(p_n) \\ \langle p(p_p) | \ \bar{u}\gamma_{\mu}\gamma_5d | n(p_n) \rangle &= \ \bar{u}_p(p_p) \left[g_A(q^2)\gamma_{\mu} - i \frac{\tilde{g}_{T(V)}(q^2)}{2M_N} \sigma_{\mu\nu}q^{\nu} + \frac{\tilde{g}_P(q^2)}{2M_N} q_{\mu} \right] \gamma_5 u_n(p_n) \end{split}$$

QE matrix elements at the nucleon level

$$\begin{aligned} \langle p(p_p) | \ \bar{u} \ d \ | n(p_n) \rangle &= g_S(q^2) \ \bar{u}_p(p_p) \ u_n(p_n) \\ \langle p(p_p) | \ \bar{u} \ \gamma_5 \ d \ | n(p_n) \rangle &= g_P(q^2) \ \bar{u}_p(p_p) \ \gamma_5 \ u_n(p_n) \\ \langle p(p_p) | \ \bar{u} \ \sigma_{\mu\nu} \ d \ | n(p_n) \rangle &= \bar{u}_p(p_p) \left[g_T(q^2) \ \sigma_{\mu\nu} + g_T^{(1)}(q^2) \ (q_\mu \gamma_\nu - q_\nu \gamma_\mu) \\ &+ g_T^{(2)}(q^2) \ (q_\mu P_\nu - q_\nu P_\mu) + g_T^{(3)}(q^2) \ (\gamma_\mu \not q \gamma_\nu - \gamma_\nu \not q \gamma_\mu) \right] u_n(p_n) \end{aligned}$$

conservation of the vector current (CVC): ٠

$$g_S(q^2) = rac{\delta M_N^{ ext{QCD}}}{\delta m_q} g_V(q^2) + rac{q^2/2 \overline{M}_N}{\delta m_q} ilde{g}_S(q^2)$$

partial conservation of the axial current (PCAC): ۲

$$g_P(q^2) = rac{\overline{M}_N}{\overline{m}_q} g_A(q^2) + rac{q^2/2\overline{M}_N}{(2\overline{m}_q)} \tilde{g}_P(q^2)$$

- We need axial form factor for NP as well
- Much larger statistics
- Large pseudo-scalar form factor (no q/M suppression)
- Different energy scale compare to beta decay experiments

Kopp, Rocco, ZT, in preparation

Zahra Tabrizi, NTN fellow, Northwestern U.

Neutrinos are not pure flavor states:

Neutrinos are not pure flavor states:

$$|\nu_{\alpha}^{s}\rangle = \frac{(1+\epsilon^{s})_{\alpha\gamma}}{N_{\alpha}^{s}}|\nu_{\gamma}\rangle , \quad \langle\nu_{\beta}^{d}| = \langle\nu_{\gamma}|\frac{(1+\epsilon^{d})_{\gamma\beta}}{N_{\beta}^{d}}$$

Observable: rate of detected events

~(flux)×(det. cross section)×(oscillation)

$$R^{\text{QM}}_{\alpha\beta} = \Phi^{\text{SM}}_{\alpha} \sigma^{\text{SM}}_{\beta} \sum_{k,l} e^{-i\frac{L\Delta m^2_{kl}}{2E_{\nu}}} [x_s]_{\alpha k} [x_s]^*_{\alpha l} [x_d]_{\beta k} [x_d]^*_{\beta l}$$

$$x_s \equiv (1 + \epsilon^s) U^* \& x_d \equiv (1 + \epsilon^d)^T U$$

Falkowski, González-Alonso, ZT, JHEP (2019)

- Can one "validate" QM-NSI approach from the QFT results?
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation?

- Can one "validate" QM-NSI approach from the QFT results? Yes...
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation? No...

Observable is the same, we can match the two (only at the linear level)

$$\epsilon^s_{\alpha\beta} = \sum_X p_{XL}[\epsilon_X]^*_{\alpha\beta}, \quad \epsilon^d_{\beta\alpha} = \sum_X d_{XL}[\epsilon_X]_{\alpha\beta}$$

Falkowski, González-Alonso, ZT, JHEP (2019)

Comparing QM and QFT

Only at the linear order:

Falkowski, González-Alonso, ZT, JHEP (2019)

Neutrino Process	NSI Matching with EFT			
ν_e produced in beta decay	$\epsilon_{e\beta}^{s} = [\epsilon_{L}]_{e\beta}^{*} - [\epsilon_{R}]_{e\beta}^{*} - \frac{g_{T}}{g_{A}} \frac{m_{e}}{f_{T}(E_{\nu})} [\epsilon_{T}]_{e\beta}^{*}$			
ν_e detected in inverse beta decay	$\epsilon^{d}_{\beta e} = [\epsilon_{L}]_{e\beta} + \frac{1 - 3g_{A}^{2}}{1 + 3g_{A}^{2}} [\epsilon_{R}]_{e\beta} - \frac{m_{e}}{E_{\nu} - \Delta} \left(\frac{g_{S}}{1 + 3g_{A}^{2}} [\epsilon_{S}]_{e\beta} - \frac{3g_{A}g_{T}}{1 + 3g_{A}^{2}} [\epsilon_{T}]_{e\beta} \right)$			
ν_{μ} produced in pion decay	$\epsilon^s_{\mu\beta} = [\epsilon_L]^*_{\mu\beta} - [\epsilon_R]^*_{\mu\beta} - \frac{m_\pi^2}{m_\mu(m_u + m_d)} [\epsilon_P]^*_{\mu\beta}$			

- Different NP interactions appear at the source or detection simultaneously
- Some of the p_{XL}/d_{XL} coefficients depend on the neutrino energy
- There are chiral enhancements in some cases

These correlations, energy dependence etc. cannot be

seen in the traditional QM approach.

Comparing QM and QFT

Beyond the linear order in new physics parameters, the NSI formula matches the (correct) one derived in the EFT only if the consistency condition is satisfied

$$p_{XL}p_{YL}^* = p_{XY}, \quad d_{XL}d_{YL}^* = d_{XY}$$

This is always satisfied for new physics correcting V-A interactions only as p_{LL} = d_{LL} = 1 by definition

However for non-V-A new physics the consistency condition is not satisfied in general

Zahra Tabrizi, NTN fellow, Northwestern UNeutrino Energy Ev [GeV]

Falkowski, González-Alonso, Kopp, Soreq, <u>ZT</u>, JHEP (2021)

Flavor Experiments

Colliders

	Coupling	Low energy (WEFT)		High energy / CLFV (SMEFT)	
		90% CL bound	process	90% CL bound	process
	$[\epsilon_P^{ud}]_{ee}$	$4.6 imes10^{-7}$	$\Gamma_{\pi ightarrow {f e} u}/\Gamma_{\pi ightarrow \mu u}$		
	$[\epsilon_P^{ud}]_{e\mu}$	$7.3 imes10^{-6}$	$\Gamma_{\pi \to e\nu} / \Gamma_{\pi \to \mu\nu}$ [7]	$2.0 imes10^{-8}$	$\mu ightarrow e {f conversion}$
	$[\epsilon_P^{ud}]_{e au}$	$7.3 imes10^{-6}$	$\Gamma_{\pi \to e\nu} / \Gamma_{\pi \to \mu\nu}$ [7]	$2.5 imes 10^{-3}$	LHC [64]
• Low Energy WEFT:	$[\epsilon_P^{ud}]_{\mu e}$	$2.6 imes10^{-3}$.	$\Gamma_{\pi ightarrow {f e} u}/\Gamma_{\pi ightarrow \mu u}$	$2.0 imes10^{-8}$	$\mu ightarrow e {f conversion}$
(Independent of the underlying high-	$[\epsilon_P^{ud}]_{\mu\mu}$	9.4×10^{-5}	$\Gamma_{\pi ightarrow {f e} u}/\Gamma_{\pi ightarrow \mu u}$		
	$[\epsilon_P^{}]_{\mu\tau}$	2.6×10^{-2}	$\mathbf{I}_{\pi \to \mathbf{e}\nu} / \mathbf{I}_{\pi \to \mu\nu}$	$5.8 \times 10^{-3(*)} / 4.4 \times 10^{-4}$	$I HC [65] / \pi door [64]$
energy theory)	$[\epsilon_P]_{\tau e}$ $[\epsilon^{ud}]$	9.0×10^{-2}	$\Gamma \Gamma$	$5.8 \times 10^{-3(*)}$	$\frac{1}{1} \frac{1}{1} \frac{1}$
\checkmark β-decays	$[\epsilon_P]_{ au\mu}$ $[\epsilon_P^{ud}]_{ au au}$	8.4×10^{-3}	au au au au au au au au au au	$5.8 \times 10^{-3(*)}$	LHC [65]
✓ Leptonic pion decays	$[\epsilon_P^{us}]_{ee}$	$1.1 imes 10^{-6}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$		
	$[\epsilon_P^{us}]_{e\mu}$	$2.1 imes10^{-5}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$	$6.2 imes10^{-7}$	$\mu ightarrow e {f conversion}$
 ✓ (Semi-)Leptonic kaon decays 	$[\epsilon_P^{us}]_{e au}$	$2.1 imes10^{-5}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$	$7.1 imes 10^{-2}$	LHC [64]
✓ Hadronic T decays	$[\epsilon_P^{us}]_{\mu e}$	$2.3 imes10^{-3}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$	$6.2 imes10^{-7}$	$\mu ightarrow e {f conversion}$
	$[\epsilon_P^{us}]_{\mu\mu}$	$2.2 imes10^{-4}$	$\Gamma_{\mathbf{K} ightarrow \mathbf{e} u} / \Gamma_{\mathbf{K} ightarrow \mu u}$		
	$[\epsilon_P^{us}]_{\mu\tau}$	$2.3 imes10^{-3}$	$\Gamma_{\mathbf{K} ightarrow \mathbf{e} u} / \Gamma_{\mathbf{K} ightarrow \mu u}$	2 - 1 - 2(x) = 1 - 2	
• High Freedy SMFFT.	$[\epsilon_P^{us}]_{\tau e}$	6.4×10^{-2}	$\Gamma_{ au ightarrow {f K} u}/\Gamma_{{f K} ightarrow \mu u}$	$3.1 \times 10^{-2(*)}/8.1 \times 10^{-2}$	LHC (data [66])/ τ -decay [64]
India miciela Otamara	$[\epsilon_P^{uv}]_{\tau\mu}$	6.4×10^{-2}	$\mathbf{\Gamma}_{\tau \to \mathbf{K}\nu} / \mathbf{\Gamma}_{\mathbf{K} \to \mu\nu}$	$3.1 \times 10^{-(*)}$	LHC (data $\begin{bmatrix} 66 \end{bmatrix}$)
(Bounds are less robust)	$[\epsilon_P]_{\tau\tau}$	1.3 × 10	7-decay [07]	3.1 X 10 V	
	$[\epsilon_P^{cs}]_{ee}$	$4.8 imes10^{-3}$	$\Gamma_{\mathbf{D_s} ightarrow \mathbf{e} u}$	1.3×10^{-2}	LHC [68]
	$[\epsilon_P^{cs}]_{e\mu}$	$4.6 imes 10^{-3}$	$\Gamma_{\mathbf{D_s} ightarrow \mathbf{e} u}$	1.3×10^{-2} / 2.7 × 10 ⁻⁶	LHC [68] / $\mu \rightarrow e$ conversion
✓ CLFV	$[\epsilon_P^{cs}]_{e\tau}$	4.6×10^{-3}	$\Gamma_{\mathbf{D_s} ightarrow \mathbf{e} u}$	$1.3 \times 10^{-2} / 1.9 \times 10^{-2}$	LHC / τ -decays [64, 68]
	$[\epsilon_P^{\circ\circ}]_{\mu e}$	8.9×10^{-3}	$\Gamma_{D_s \to \mu u}$	$2.0 \times 10^{-2} / 2.7 \times 10^{-2}$	LHC [68] / $\mu \rightarrow e$ conversion
	$[\epsilon_P]\mu\mu$ $[\epsilon^{cs}]$	1.0×10 8.9 × 10 ⁻³	$\Gamma_{D_s \to \mu \nu}$	2.0×10^{-2}	LHC [68]
	$[\epsilon_P]\mu\tau$ $[\epsilon_B^{cs}]_{\tau e}$	$2.0 imes10^{-1}$	$\Gamma_{D_s \to \tau \nu}$	$1.6 imes 10^{-2}$ / $1.9 imes 10^{-2}$	LHC / τ -decays [64]
Bounds shown in bold face have been	$[\epsilon_{P}^{cs}]_{\tau\mu}$	$2.0 imes10^{-1}$	$\Gamma_{\mathbf{D}_{\mathbf{s}} \to \tau \nu}$	$2.5 imes 10^{-2}$	LHC [68]
calculated in this work	$[\epsilon_P^{cs}]_{\tau\tau}$	$3.2 imes10^{-2}$	$\Gamma_{\mathrm{D_s} ightarrow au u}$	2.5×10^{-2}	LHC [68]

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

Turning on one interaction at a time: Scalar

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, **ZT** *JHEP* 10 (2021) 086

Optimistic (5%, 10%, 15%) and Pessimistic (30%, 40%, 50%), uncertainties on electron muon and tau neutrinos

Turning on one interaction at a time: Tensor

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, ZT JHEP 10 (2021) 086

Optimistic (5%, 10%, 15%) and Pessimistic (30%, 40%, 50%), uncertainties on electron muon and tau neutrinos

