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First Results from Moriond! 
Dark Photons and Neutrinos

  
Brian Peterson’s (FASER) talk at Moriond EW: slides  
Ettore Zaffaroni’s (SND) talk at Moriond EW: slides 
Carl Gwilliam’s talk (FASER) at Moriond QCD: slides 

Neutrino Observation (FASER): 2303.14185  
Dark Photon Analysis (FASER): CONF NOTE 

https://indico.in2p3.fr/event/29681/contributions/122474/attachments/76425/110931/05-BPetersen-v1.pdf
https://indico.in2p3.fr/event/29681/contributions/122476/attachments/76427/110933/07-EZaffaroni-v1-public.pdf
https://moriond.in2p3.fr/QCD/2023/WednesdayMorning/Gwilliam.pdf
https://arxiv.org/abs/2303.14185
https://cds.cern.ch/record/2853210
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(1.1 ton)

• Small, inexpensive detector
• 10 cm radius
• 7 m long

(ariXiv:2207.11427)

FASER Experiment
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FASER Installation

• Detector installed between March – Nov 2021, ready for LHC run 3
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Preshower
Tracking spectrometer Decay volume

Veto

To ATLAS
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FASER Operations

• Successfully operated throughout 2022
• Continuous data taking
• Largely automated 
• Up to 1.3 kHz 

• Recorded 96.1% of delivered lumi.
• DAQ dead-time of 1.3%
• A couple of DAQ crashes

• Emulsion detector exchanged twice
• Needed to manage occupancy
• First box only partially filled

• Calorimeter gain optimised for: 
• Low E (<300 GeV) before 2nd exchange
• High E (up to 3 TeV) after this exchange
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Analyses presented use 27.0 fb-1 or 35.4 fb-1

FASER Experiment
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Dark Photon Selection

• Simple and robust A’ à e+e- selection, optimised for discovery 
• Blind events with no veto signal and E(calo) > 100 GeV 
• Efficiency of ~40% across region sensitive to 
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1. Collision event with 
good data quality

2. No signal (< 40 pC) in 
any veto scintillator

3. Exactly 2 good fiducial tracks 
• p > 20 GeV and r < 95 mm 
• Extrapolating to r < 95 mm at vetos

4. Timing and preshower
consistent with ≥2 MIPs

5. Calo E > 500 GeV

Dark Photon Analysis
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• Main background is from neutrino interactions
• Primarily coming from vicinity of timing detector
• Estimated from GENIE simulation (300 ab-1)

• Uncertainties from neutrino flux & mismodelling
• Predicted events with E(calo) > 500 GeV 

Dark Photon Backgrounds
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• Neutral hadrons (e.g. Ks) from upstream muons 
interacting in rock in front of FASER
• Heavily suppressed since:

• Muon nearly always continues after interaction
• Has to pass through 8 interaction lengths (FASERν) 
• Decay products have to leave E(calo) > 500 GeV

• Estimated from lower energy events with 2 or 3 
tracks and different veto conditions

N = (1.8 ± 2.4) x 10-3

N = (2.2 ± 3.1) x 10-4

• Total background prediction 

N = (2.02 ± 2.4) x 10-3
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Dark Photon Backgrounds

• Veto inefficiency 
• Measured layer-by-layer via muons 

with tracks pointing back to vetos
• Layer efficiency > 99.998%
• 5 layers reduce exp. 108 muons to 

negligible level (even before cuts)
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• Non-collision backgrounds
• Cosmics measured in runs with no beam
• Near-by beam debris measured in non-

colliding bunches
• No events observed with ≥1 track or 

E(calo) > 500 GeV individually
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Dark Photon Results
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• No events in unblinded signal region
• Not even any with ≥1 fiducial track

• Based on this null results, FASER sets limits 
in previously unexplored parameter space!
• Probing region interesting from thermal relic target
• Also taking into account new preliminary NA62 result (see backup) CERN-FASER-CONF-2023-001

Dark Photon Analysis
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Observing Neutrino Candidates in FASER
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1. Collision event with 
good data quality

2. No signal (<40 pc) in 2 front vetos
3. Signal (>40 pC) in other 3 vetos

4. Exactly 1 good fiducial (r < 95 mm) track 
• p > 100 GeV and θ < 25 mrad
• Extrapolating to r < 120 mm in front veto

5. Timing and preshower
consistent with ≥1 MIP

• Can detect CC νμ using 
just spectrometer and 
veto systems!

• Expect 151 ± 41 events
from GENIE simulation
• Uncertainty from 

DPMJET vs SIBYLL
• No experimental errors 

• Currently not trying to 
measure cross section

Simulated neutrino CC interaction

νμ

Electronic Neutrino Analysis



Electronic Neutrino Analysis
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Neutrino Backgrounds

• Neutral hadrons estimated from 2-step simulation
• Expect ~300 neutral hadrons with E>100 GeV reaching FASERν

• Most accompanied by μ but conservatively assume missed
• Estimate fraction of these passing event selection

• Most are absorbed in tungsten with no high-momentum track
• Predict N = 0.11 ± 0.06 events

• Scattered muons estimated from data SB
• Take events w/o front veto radius requirement and single

track segment in first tracker station with 90 < r < 95 mm
• Fit to extrapolate to higher momentum

• Scale by # events with front veto cut
• Use MC to extrapolate to signal region

• Predict N = 0.08 ± 1.83 events
• Uncertainty from varying selection

• Veto inefficiency estimated from final fit
• Fit events with 0 (SR) and also 1 (1st or 2nd) or 2 front veto layers firing
• Find negligible background due to very high veto efficiency
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Neutrino Results
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• Upon unblinding find 153 events with no veto signal
• Just 10 events with one veto signal

• First direct detection of collider neutrinos!
• With signal significance of 16σ
• Submitted to PRL arXiv:2303.14185

Candidate Events

n0 153

n10 4

n01 6

n2 64014695

(151 ± 41)

Neutrino candidate

Electronic Neutrino Analysis



Electronic Neutrino Analysis
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Neutrino Characteristics

• Candidate neutrino events match 
expectation from signal
• High occupancy in front tracker station
• Most events have high μ momentum
• More νμ than anti- νμ

• Note: no acceptance corrections nor any
systematic uncertainties in these plots
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+ve muons 
à anti νμ

-ve muons 
à νμ



First FASERv Results
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Neutrinos in FASERν
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• Vertex with 11 tracks
• 615 µm inside tungsten

• e-like track from vertex
• Single track for 2X0
• Shower max @ 7.8Χ0
• θe = 11 mrad to beam

• Back-to-back topology
• 175° between e & rest

Beam View

Side View

• Analysis of FAESRν emulsion detector underway 
• Have multiple candidates including highly νe like CC event



First SND@LHC Results

Neutrino observation with electronic detectors 
● Analysis strategy:

○ Full Run 3 2022 dataset, 39 fb-1

○ Observe 𝜈𝜇 Charged Current interactions with electronic detectors only
○ Maximise S/B, counting-based approach
○ ~109 muon events: apply cuts with a strong rejection power to reach a negligible 

background level
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● Signal selection:
○ Fiducial Volume (1, 2) cuts

● Require an event from a neutral vertex, located in the 3rd 
or 4th target wall

● Select fiducial cross-sectional area to reject entering 
backgrounds

○ Neutrino ID cuts
● Require large EM activity in SciFi and hadronic activity in 

the HCAL
● Event produced upstream (timing)
● Muon reconstructed and isolated in the Muon system

𝜈𝜇CC simulation

Fiducial volume

SIGNAL

Top view

Side view

Collision axis

Collision axis



Background estimates (I)
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● Muon induced background
 Number of undetected muons entering the target (2022 Run3 data)

SND@LHC PRELIMINARY

  a)    Muon DIS

Total number of muons in 
target acceptance 

Veto inefficiency SciFi plane inefficiency

  b)    Muon EM

X

~ 10-2 totally negligible

:= within SND@LHC acceptance
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c)        Neutral interaction
Charm production Decay in Flight (DIF)

SND@LHC PRELIMINARYBackground estimates (II)

● Muon-induced neutral interactions

~ 0.12 (K0
L) + 0.06 (neutrons) ~ 0.2

Systematic uncertainty
estimation is ongoing

:= within SND@LHC acceptance



First SND@LHC Results

Observed candidates
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SND@LHC PRELIMINARY
● Observed 𝜈𝜇 candidates: 8 (expected 5)
● Preliminary estimate of background yield: 0.2 

SND@LHC
PRELIMINARY
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What can we learn from this? 
Comparison to Flux Predictions



Neutrino Fluxes
Use neutrino fluxes from 2105.08270 
• hadrons from MC generators
• propagation of light hadrons through LHC
• hadron decays into neutrinos 
• Large uncertainties from forward charm  

Simulation and analysis
• GENIE + Geant4 + cuts
• no experimental uncertainties 
→ no flux measurement 

So one cannot really say 
anything, except that it roughly 

matches expectations.

𝜋𝐾Λ

charm

full volume, 150/fb, no efficiencies

https://arxiv.org/abs/2105.08270


Neutrino Fluxes
FPF WG2: forward charm predictions from 5 groups
• different approaches on physics modeling
• predictions span large range
• SIBYLL / DPMJET roughly correspond to minimum/maximum prediction

Many thanks to all the contributing groups! 

𝜋𝐾Λ

from charm



Physics Potential with FLARE

Gallium Anomaly: θe4~0.1 x1~10-7 and x2~1

• CR experiments observe an excess of muons compared to generators
• this prevents them from measuring the flux composition  

and understanding the origin of the cosmic rays
• most likely explanation: enhanced forward strangeness at high energies
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Some remark on limitations of GENIE 
Hadronization



Neutrino Interaction Simulation
Last time Juan talked about 
neutrino interactions  

• There are reliable state-of-the-
art predictions for differential 
neutrino cross-sections at FPF 
energies 

• Robust estimate of all relevant 
sources of experimental and 
theory uncertainties

• Model-independent 
determination of nuclear 
corrections to free-nucleon 
scattering

• They can be readily used in 
GENIE by means of the HEDIS 
package (official GENIE release)



Neutrino Interaction Simulation

How about hadronic final state? 
• Test: simulate neutrino interactions 

with GENIE and GIBUU and plot 
energetic charge particle multiplicity. 

• Result: they are the same 

Juan mainly covered total rate / leptonic final state.   



Neutrino Interaction Simulation

How about hadronic final state? 
• Test: simulate neutrino interactions 

with GENIE and GIBUU and plot 
energetic charge particle multiplicity. 

• Result: they are the same 

I asked authors about it:
• assumption: hadronization occurs 

outside nucleus → actually that’s a 
hypothesis, not measured yet

• assumption: partons don’t interact 
with nucleus → that’s counterintuitive 
and most likely wrong

Juan mainly covered total rate / leptonic final state.   

One should be cautious regarding details of hadronic final state. 
• Is that important for FLARE
• It’s relevant for emulsion experiments (which require >4 tracks)



Neutrino Interaction Simulation

Ulrich Mosel, GIBUU, at FPF3: link 

https://indico.cern.ch/event/1076733/timetable


Neutrino Interaction Simulation
Jan T. Sobczyk, 
NuWro,  
at FPF3 link 

Neut manual: link 

https://indico.cern.ch/event/1076733/timetable
https://arxiv.org/pdf/2106.15809.pdf

