Simulations of the FLArE Detector

Jianming Bian, Wenjie Wu University of California, Irvine

September 1, 2022

- Simulation of neutrino events: Genie to Geant4
- Containment studies of neutrino interactions
- Studies of event selection with MC truth-based pseudo-reconstruction

Simulation of neutrino events: Genie to Geant4

Neutrino flux

FLArE10, 620m downstream from IP, 3000/fb

Wenjie Wu I Simulations of the FLArE Detector

 ν_{τ} is predominantly produced by the charm decay $D_{s} \rightarrow \tau \nu_{\tau}$ and the subsequent tau decay NLO perturbative evaluations of charm production using the **PROSA PDFs**

x Luminosity / 2 $u_{ au}$ 10¹ Felix Kling, et. al. Mean: 329.2 GeV RMS: 372.4 GeV **10**¹⁰ Weidong Bai, et. al. Mean: 256.6 GeV 10⁹ RMS: 261.8 GeV 10⁸ 800 1000 1200 1400 1600 1800 2000 200 600 400 E [GeV] Weidong Bai, et. al. <u>2112.11605</u>

Figure 12, Table 5

eta > 6.9 (radius 1 m at a distance of 480 m from IP)

Events

Neutrino flux

- ν_{τ} flux from two studies are very different
- Large uncertainties exist for the neutrino flux in the far-forward region at the LHC

Cross section (up to 5 TeV) in GENIE

https://scisoft.fnal.gov/scisoft/packages/genie_xsec/v3_00_06/ genie_xsec-3.00.06-noarch-G1802a00000-k250-e5000-resfixfix.tar.bz2

This cross section is not promising when energy goes too high Flux drops quickly after 4.8 TeV, but it's not a big issue for energies lower than that for now <u>Recently GENIE</u> updated a new package HEDIS, implementing high-energy cross section calculation and event generation modules (https://arxiv.org/pdf/2106.09381.pdf), which we can probably give it a try

GENIE simulation: ν_{τ}

Felix Kling, et. al. <u>2105.08270</u>

GENIE simulation: ν_{τ}

Weidong Bai, et. al. <u>2112.11605</u>

GENIE simulation: muon spectrum from tau decay

Bai, $\nu_{\tau} \rightarrow \tau^- \rightarrow \mu^-$ Mean: 102.9 GeV RMS: 136.7 GeV

Kling, $\nu_{\tau} \rightarrow \tau^- \rightarrow \mu^-$ Mean: 146.0 GeV RMS: 201.0 GeV

Muon energy spectrum, area normalized

Importing GENIE events to Geant4

- Gean4 doesn't know anything about GENIE formats (.ghep.root). What we're doing now is
 - to link to GENIE libraries, so we can have a dictionary for the ROOT file format
 - read in the event record and then loop over the particles in the event record

lx I	Name I	Ist	I PDG	I Mo	other	Daugh	ter l	Px I	Ру	l Pz	I E	l m	
0	nu_tau	0	16	 -1	-1	4	4	0.000	0.000	 999.000	 999.000	0.000	1
1	Ar40	0	1000180400	-1	-1	2	3	0.000	0.000	0.000	37.216	37.216	I
2	neutron	11	2112	1	-1	5	5 I	0.143	0.034	-0.048	0.929	**0.940	M = 0.916
3	Ar39	2	1000180390	l 1	-1	23	23 I	-0.143	-0.034	0.048	36.286	36.286	I
4	tau-	3	l 15	0	-1	24	26 I	4.942	-0.842	614.564	614.587	1.777	P = (-0.008)
5 I	HadrSyst	12	200000001	1 2	-1	6	7	-4.800	0.876	384.388	385.342	**0.000	M = 26.660
6 I	u l	12	2	l 5	-1	8	8	-4.801	0.876	384.527	384.558	0.330	1
7	ud_1	12	2103	l 5	-1	8	8	0.002	-0.000	-0.139	0.784	0.771	I
8	string	12	l 92	I 6	-1	9	13 I	-4.800	0.876	384.388	385.342	**0.000	M = 26.660
9	pi0	14	111	8	-1	16	16 I	-2.716	0.496	257.866	257.880	0.135	FSI = 1
0	pi+	14	211	8	-1	17	17	-0.980	0.207	38.737	38.751	0.140	FSI = 1
1	pi-	14	-211	8	-1	18	18 I	-1.522	0.658	85.730	85.747	0.140	FSI = 1
2	neutron	14	2112	8	-1	19	19	0.654	-0.624	1.056	l 1.678	0.940	FSI = 1
3	rho+ l	12	213	8	-1	14	15 I	-0.235	0.140	0.998	1.286	**0.767	M = 0.764
4	pi+	14	211	13	-1	20	21	0.210	-0.069	0.162	0.307	0.140	FSI = 2
5	pi0	14	111	13	-1	22	22	-0.445	0.209	0.836	0.979	0.135	FSI = 1
6	pi0	1	111	I 9	-1	-1	-1	-2.716	0.496	257.866	257.880	0.135	1
7	pi+	1	211	10	-1	-1	-1	-0.980 l	0.207	38.737	l 38.751	0.140	I
8	pi-	1	-211	11	-1	-1	-1	-1.522	0.658	85.730	85.747	0.140	1
9	neutron	1	2112	12	-1	-1	-1	0.654	-0.624	1.056	l 1.678	0.940	1
0	pi0	1	111	14	-1	-1	-1	-0.007	0.124	0.014	0.184	0.135	1
1	proton	1	2212	14	-1	-1	-1	0.334	-0.354	0.088	l 1.061	0.938	I
2	pi0	1	111	l 15	-1	-1	-1	-0.445	0.209	0.836	0.979	0.135	I
3	HadrBlob	15	200000002	I 3	-1	-1	-1	-0.261	0.127	0.108	35.349	**0.000	M = 35.347
4	nu_mu_bar	1	-14	4	-1	-1	-1	3.601	-0.718	355.999	356.018	**0.000	M = 0.106
5	mu- I	1	13	4	-1	-1	-1	0.586	0.193	125.415	125.417	**0.106	M = 0.101
:6 I	nu_tau	1	16	4	-1	-1	-1 I	0.756 l	-0.317	133.150	133.152	**0.000	M = -0.038
	Fin-Init:							0.000	-0.000	-0.000	-0.000		1
	Vertex:	nu_t	au @ (x =	0.000	000 m, y	' =	0.000	00 m, z =	0.000	00 m, t =	0.00000	0e+00 s)	
r f	lag [bits:15->0] ask [bits:15->0]	: 00 : 11	 000000000000000 111111111111111	0 1	1st s Is un	et: physic	al:	NO Ac	cepted:	YES		none	

100 GeV ν_{τ}

- DIS CC
- ν_{τ} + Ar40 $\rightarrow \tau^{-}$ + Ar39 + hadrSyst $\rightarrow \tau^- \rightarrow \nu_{\tau} + \bar{\nu}_e + e^-$

Wenjie Wu I Simulations of the FLArE Detector

	Idx	I Name	Ι	Ist	I PDG	il	Мо	ther	I D	augh	ter	I	Px	Ру	l Pz	I E	l m
1	0	l nu_tau		0	16	5	-1	-1		4	4		0.000	0.000	100.000	100.000	0.000
L	1	Ar40	L	0	1000180400)	-1	-1	I -	2	3		0.000	0.000	0.000	l 37.216	37.216
L	2	l neutron	L	11	2112	2	1	-1	1	5 I	5		-0.068	0.054	0.167	0.929	**0.940
L	3	l Ar39	L	2	1000180390)	1	-1		28 I	28		0.068	-0.054	-0.167	l 36.286	36.286
l	4	l tau-		3	15	5	0	-1		29	31		1.562 I	0.484	25.817	25.929	1.777
L	5	l HadrSyst		12	200000001	. 1	2	-1	1	6 I	7		-1.630	-0.430	74.350	75.000	**0.000
L	6	l u		12	I 2	2	5	-1	1	8	8		-1.627	-0.429	74.193	74.213	0.330
L	7	l ud_1	Ι	12	l 2103		5	-1	1	8	8		-0.003	-0.001	0.157	0.787	0.771
L	8	l string	Ι	12	I 92	2	6	-1	1	9	14		-1.630	-0.430	74.350	75.000	**0.000
L	9	l rho0	Ι	12	113		8	-1	1	15 I	16		-0.654	-0.116	33.267	33.282	**0.768
L	10	Delta++	Ι	12	2224	.	8	-1	1	17 I	18		-0.465 l	-0.306	31.178	I 31.202	**1.231
L	11	l pi-	Ι	14	-211	. 1	8	-1	1	19	19		-0.282	-0.224	2.723	2.750	0.140
L	12	I Lambda0_bar	Ι	14	-3122	2	8	-1	1	20	20		-0.157	0.659	5.247	5.407	1.116
	13	Lambda0	Ι	14	3122	2	8	-1	1	21	21		-0.136	-0.396	1.732	2.102	1.116
L	14	l pi0	Ι	14	111	. 1	8	-1		22	23		0.064	-0.048	0.203	0.257	0.135
L	15	l pi-	Ι	14	-211	. 1	9	-1		24	24		0.052	0.119	10.504	10.506	0.140
I	16	l pi+	Ι	14	211	. 1	9	-1		25 I	25		-0.705 l	-0.236	22.763	22.776	0.140
I	17	l proton	Ι	14	2212	2	10	-1		26 I	26		-0.462	-0.332	27.597	27.619	0.938
	18	pi+		14	211		10	-1		27	27		-0.003	0.026	3.581	3.584	0.140
	19	l pi-	Ι	1	-211	.	11	-1		-1	-1		-0.282	-0.224	2.723	2.750	0.140
L	20	Lambda0_bar	Ι	1	-3122	2	12	-1		-1	-1		-0.157	0.659	5.247	5.407	1.116
L	21	Lambda0	Ι	1	3122	2	13	-1	1	-1	-1		-0.136	-0.396	1.732	2.102	1.116
L	22	l neutron	Ι	1	2112	2	14	-1	1	-1	-1		-0.441	0.263	-0.101	l 1.076	0.940
L	23	l proton	Ι	1	2212	2	14	-1	1	-1	-1		0.417	-0.270	-0.038	l 1.062	0.938
L	24	l pi-	Ι	1	-211	. 1	15	-1		-1	-1		0.052 I	0.119	10.504	10.506	0.140
L	25	l pi+	Ι	1	211	. 1	16	-1		-1	-1		-0.705 l	-0.236	22.763	22.776	0.140
	26	l proton	Ι	1	2212	2	17	-1	1	-1	-1		-0.462	-0.332	27.597	27.619	0.938
L	27	l pi+	Ι	1	211	. 1	18	-1	1	-1	-1		-0.003	0.026	3.581	3.584	0.140
Ι	28	HadrBlob		15	200000002		3	-1		-1	-1		0.156	-0.095	0.176	34.405	**0.000
I	29	l nu_e_bar		1	-12		4	-1		-1	-1		0.227	0.285	7.080	7.089	0.000
	30	e-		1	11	. 1	4	-1		-1	-1		0.373	0.736	10.029	10.063	**0.001
L	31	l nu_tau		1	16		4	_1	1	-1	-1	1	0.962	-0.537	8.708	8.777	**0 000

Exclude gamma/neutron

red: eblue: e+ cyan: proton orange: pi+ violet: pi-

Containment studies

Preliminary detector configuration

	LArTPC	HadCal	MuonFinder
ength (mm)	0 - 7000	7250 - 8300	8300 - 8660
C	Aluminum cry 1/2 densi	∕ostat <mark>HadCal</mark> ty	MuonFinder
		hadcal	
	→ → 0.25 m	5 cm Fe, 1 + 1 cn scint planes. 15 layers	n 16 cm fe + 1 + ⁻ cm scint 2 layers

ν_{τ} in the detector

- Neutrino vertices are uniformly distributed in a 1x1x7 meter volume
- Neutrino energy/Interaction mode/FSL come from GENIE v3_00_06k
 - Flux comes from Weidong Bai, et. al. <u>2112.11605</u>

Energy containment in the LArTPC

- LArTPC to the neutrino energy
 - values and standard deviation as error bars

Energy containment w/ the HadCal

- The ratio of the energy deposited in the (LArTPC+HadCal) to the neutrino energy
 - The orange markers are the mean values and standard deviation as error bars
- The hadCal can save loss energies for events happened in the downstream of the detector
 - The containment becomes flat for both transverse cuts

HadCal Calibration

- In order to reconstruct the energy deposited in the HadCal, we'll need to calibrate it
 - The energy deposited in HadCal is proportional to the energy recorded by HadCal (the scintillator)
 - Good linearity

ν_{μ} in the detector

- Neutrino vertices are uniformly distributed in a 1x1x7 meter volume
- Neutrino energy/Interaction mode/FSL come from GENIE v3_00_06k
 - Flux comes from *Felix Kling*, et. al. <u>2105.08270</u>

- - values and standard deviation as error bars

Wenjie Wu I Simulations of the FLArE Detector

UCIRVINE

- - values and standard deviation as error bars
- Make transverse cuts for energy

Current detector configuration in Geant4

	LArTPC	HadCal	MuonFind
Length (mm)	0 - 7000	7250 - 8300	8300 - 934

Energy containment in the LArTPC

- To verify the energy containment in the geometry 1.8x1.8x7
- The ratio of the energy deposited in the LArTPC to the neutrino energy
 - The orange markers are the mean values and standard deviation as error bars

1.8x1.8x7 m

Jianming Bian, Wenjie Wu (UCI)

3x3x7 m

Energy containment w/ HadCal

- To verify the energy containment in the geometry 1.8x1.8x7
- The ratio of the energy deposited in the (LArTPC+HadCal) to the neutrino energy The orange markers are the mean values and standard deviation as error bars
- The hadCal can save loss energies for events happened in the downstream of the detector

1.8x1.8x7 m

Jianming Bian, Wenjie Wu (UCI)

3x3x7 m

Studies of event selection with MC truth-based pseudo-reconstruction

Signal and background

- Only considered beam neutrino background here
- Decay modes of the tau lepton
 - τ_{ρ} : taus decay to electrons
 - τ_{μ} : taus decay to muons
 - τ_{had} : taus decay to hadrons

TABLE I. Dominant decay modes of τ^- . All decays involving kaons, as well as other subdominant decays, are in the "Other" category.

Decay mode	Branching ratio
Leptonic	35.2%
$e^-\bar{\nu}_e\nu_{\tau}$	17.8%
$\mu^- \bar{ u}_\mu u_\tau$	17.4%
Hadronic	64.8%
$\pi^-\pi^0 u_{ au}$	25.5%
$\pi^- \nu_{\tau}$	10.8%
$\pi^-\pi^0\pi^0 u_{ au}$	9.3%
$\pi^-\pi^-\pi^+ u_ au$	9.0%
$\pi^-\pi^-\pi^+\pi^0 u_{ au}$	4.5%
Other	5.7%

Wenjie Wu I Simulations of the FLArE Detector

FIG. 2. Pictorial representation of hadronic tau (upper left) and leptonic tau (upper right) signals, and their corresponding backgrounds (lower).

10.1103/PhysRevD.102.053010

Signal and background

- Same amount of neutrino interactions were simulated for ν_e, ν_μ , and ν_τ (10000 for each)
- To have proper percentages of the 3 flavor neutrinos, weights were applied based on the numbers below
 - 10 tons (1x1x7 m FV), 3000/fb luminosity of HL-LHC

	Ľ	Detector	Number of CC Interactions				
Name	Mass	Coverage	Luminosity	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + \overline{\nu}_{\mu} $	$\nu_{ au} + \bar{\nu}_{ au}$	
$FASER\nu$	1 ton	$\eta \gtrsim 8.5$	150 fb^{-1}	901 / 3.4k	4.7k / 7.1k	15 / 97	
SND@LHC	800kg	$ 7 < \eta < 8.5 $	150 fb^{-1}	137 / 395	790 / 1.0k	7.6 / 18.6	
$FASER\nu 2$	20 tons	$\eta \gtrsim 8.5$	3 ab^{-1}	178k / 668k	943k / 1.4M	2.3k / 20k	
FLArE	10 tons	$\eta \gtrsim 7.5$	3 ab^{-1}	36k / 113k	203k / 268k	1.5k / 4k	
AdvSND	2 tons	$7.2 \lesssim \eta \lesssim 9.2$	3 ab^{-1}	6.5k / 20k	41k / 53k	190 / 754	

Table 7.1: Detectors and neutrino event rates: The left side of the table summarizes the detector specifications in terms of the target mass, pseudorapidity coverage and assumed integrated luminosity for both the LHC neutrino experiments operating during Run 3 of the LHC as well as the proposed FPF neutrino experiments. On the right, we show the number of charged current neutrino interactions occurring the detector volume for all three neutrino flavors as obtained using two different event generators, Sibyll 2.3d and DPMJet 3.2017.

- Signal: τ_{had} (taus decay to hadrons)
 - τ_{had} has larger branch ratio than τ_{μ} and τ_{e} , there is potential to be a good channel to select ν_{τ}
 - τ_{had} has at least one π^- in the final state

TABLE I. Dominant decay modes of τ^- . All decays involving kaons, as well as other subdominant decays, are in the "Other" category.

Decay mode	Branching ratio	
Leptonic	35.2%	
$e^{-i}\bar{\nu}_e\nu_{\tau}$	17.8%	n
$\mu^- \bar{ u}_\mu u_\tau$	17.4%	
Hadronic	64.8%	
$\pi^{-}\pi^{0}\nu_{\tau}$	25.5%	
$\pi^- \nu_{\tau}$	10.8%	ν_{α}
$\pi^-\pi^0\pi^0 u_{ au}$	9.3%	
$\pi^-\pi^-\pi^+ u_{ au}$	9.0%	
$\pi^-\pi^-\pi^+\pi^0 u_{ au}$	4.5%	
Other	5.7%	

10.1103/PhysRevD.102.053010

UCIRVINE

- Neutrinos in the final state are invisible to the detector, contributing to the missing transverse momentum
 - Almost all ν_{μ} CC, ν_{e} CC have zero neutrino in the final state
 - NC events and τ_{had} have 1 neutrino, τ_{μ} and τ_{e} have 2 neutrinos

- Find the most energetic π^- shower of each event
 - τ_{had} generally has a more energetic π^- in the final state

 $\tau_{\rm had} \times 300$ others Ŏ.00 0.25 0.50 third_closest_shower_to_leading_piminus_angle [deg] $\tau_{\rm had} \times 300$ others ()0.25 Ŏ.00 0.50 fourth_closest_shower_to_leading_piminus_angle [deg]

Wenjie Wu I Simulations of the FLArE Detector

• Find the most energetic π^- shower of each event

- Search for showers around the leading π^-

GradientBoostingClassifier

- $\tau_{\rm had}$ /others
- Training:Testing = 1:1
- Testing sample (scaled): 454.6 signal, 155,345.9 background
- Define FOM, find the optimum cut value is 0.83, with N_{sig}=122.8, N_{bkg}=192.3, FOM=6.92

GradientBoostingClassifier

GradientBoostingClassifier

- Pt, leading_piminus_edep, angle and edep_frac of 4 showers
- Testing sample: 458.8 signal, 155,599.7 background
- The optimum cut value is 0.88, with N_{sig}=91.6, N_{bkg}=50.5, FOM=7.68

Wenjie Wu I Simulations of the FLArE Detector

ROC curve (area = 0.94)

0.6

0.8

Leptonic decay

- Signal: τ_{μ} (tau decays to muon)
 - τ_{μ} will leave a muon track in the detector, like ν_{μ} CC

TABLE I. Dominant decay modes of τ^- . All decays involving kaons, as well as other subdominant decays, are in the ν_i "Other" category.

Decay mode	Branching ratio	5
Leptonic	35.2%	
$e^{-\overline{\nu}_e \nu_{\tau}}$	17.8%	n
$\mu^- \bar{ u}_\mu u_ au$	17.4%	
Hadronic	64.8%	
$\pi^-\pi^0 u_{ au}$	25.5%	
$\pi^- \nu_{\tau}$	10.8%	$ u_e, \nu_\mu$
$\pi^-\pi^0\pi^0 u_{ au}$	9.3%	
$\pi^-\pi^-\pi^+ u_{ au}$	9.0%	5
$\pi^-\pi^-\pi^+\pi^0 u_{ au}$	4.5%	>
Other	5.7%	
		n

10.1103/PhysRevD.102.053010

Leptonic decay

- N_{bkg}=244.3, FOM=4.07

Detector requirement

- The event classifiers are trained based on MC truth information
- capability. It should be able to provide some insight on the requirement of the detector

We can add smearing to the angle, deposited energy et.al, and then check how do they affect the classification

Summary and next steps

- With different transverse cuts, detector sizes with 3m 2m width/height don't show noticeable difference
 - Currently use 1.8x1.8x7 m geometry
- With HadCal, energy loss for events happened at the downstream of the detector can be effectively recorded • The energy deposited in HadCal can be reconstructed by the energy recorded in the scintillator layers • MuonFinder can be used to effectively tag the muons
- - We can tune the thickness of steel layers or the number of layers to have a better muon acceptance
- The event classifiers trained based on the pseudo-reconstructed variables for τ_{had} and τ_{μ} look promising, while for τ_{ρ} it will be more challenging which is still under investigation
- Large statistical fluctuation, will generate a larger sample
- Will keep looking into other possibilities for event classification
- Including muon background as well

Backup

GENIE simulation: ν_{μ}

Felix Kling, et. al. 2105.08270

GENIE simulation

Felix Kling, et. al. <u>2105.08270</u>

Wenjie Wu I Simulations of the FLArE Detector

Muon energy spectrum, area normalized Muon from tau decay is softer

Energy containment w/ the HadCal (ν_{μ})

- The ratio of the energy deposited in the (LArTPC+HadCal) to the neutrino energy The orange markers are the mean values and standard deviation as error bars
- The hadCal can save loss energies for events happened in the downstream of the detector
 - The containment becomes flat for both transverse cuts

Energy containment w/ HadCal (ν_{ρ})

- The ratio of the energy deposited in the (LArTPC+HadCal) to the neutrino energy The orange markers are the mean values and standard deviation as error bars The hadCal can save loss energies for events happened in the downstream of the detector
- - The containment becomes flat for both transverse cuts

