Signal and background in FLArE

Jianming Bian, Wenjie Wu University of California, Irvine

July 7, 2022

Detector configuration in Geant4

	LArTPC	HadCal	MuonFind
Length (mm)	0 - 7000	7250 - 8300	8300 - 934

Jianming Bian, Wenjie Wu (UCI)

LArTPC

HadCal

MuonFinder

Simulation setup

- The vertices of neutrino interactions are uniformly distributed in the FV region (1x1x7 m)
- No angular smearing for the neutrino beam, all pointed at +z direction
- Same amount of neutrino interactions were simulated for ν_e, ν_μ , and ν_τ
 - flux ratio is ~100:400:1

Signal and background

- Only consider beam neutrino background for now
- Decay modes of the tau lepton
 - τ_e : taus decay to electrons
 - τ_{μ} : taus decay to muons
 - τ_{had} : taus decay to hadrons
- Major background of τ_{μ} signal: ν_{μ} CC events
- Major background of τ_e signal: ν_e CC events
- Major background of τ_{had} signal: NC scattering events from all neutrinos

Decay mode	Branching ratio
Leptonic	35.2%
$e^-\bar{\nu}_e\nu_{\tau}$	17.8%
$\mu^- ar{ u}_\mu u_ au$	17.4%
Hadronic	64.8%
$\pi^{-}\pi^{0}\nu_{\tau}$	25.5%
$\pi^- \nu_{\tau}$	10.8%
$\pi^-\pi^0\pi^0\nu_{\tau}$	9.3%
$\pi^-\pi^-\pi^+ u_{ au}$	9.0%
$\pi^-\pi^-\pi^+\pi^0 u_{ au}$	4.5%
Other	5.7%

TABLE I. Dominant decay modes of τ^- . All decays involving kaons, as well as other subdominant decays, are in the "Other" category.

Jianming Bian, Wenjie Wu (UCI)

FIG. 2. Pictorial representation of hadronic tau (upper left) and leptonic tau (upper right) signals, and their corresponding backgrounds (lower).

10.1103/PhysRevD.102.053010

Signatures of the final state particles

- energy

Deposited energy of the longest prong

• τ_{μ} and ν_{μ} CC are distinctive from other channels

Some other features

- τ_{μ} and ν_{μ} CC have relatively longer shower length
- Averaged <dE/dx> can also be used to select τ_{μ} and ν_{μ} CC

Missing transverse momentum

• τ_{μ} have more neutrinos in the final state than ν_{μ} CC, thus more missing momentum in the transverse plane

Energy of the leading π^-

- $au_{
 m had}$ has larger branch ratio than au_{μ} and au_{e} , there is potential to be a good channel to select $u_{ au}$
- au_{had} generally have a more energetic π^- in the final state

First look of a BDT

- Signal τ_{μ} , Background others
- Input: Missing transverse momentum, EInHadCal/EInMuonFinder/<dEdxInLAr> of the longest prong

Input variables (normalized)

First look of a BDT

- Signal τ_{μ} , Background others
- Input: Missing transverse momentum, EInHadCal/EInMuonFinder/<dEdxInLAr> of the longest prong
- Training:validation = 15000:15000
- Validation sample: 740 signal, 14260 background

First look of a BDT

• Define FOM = $\frac{S}{\sqrt{S+B}}$, find the optimum cut value is 0.48, with N_{sig}=461, N_{bkg}=127

- Selected background: 51 ν_{μ} CC, 20 τ_{had} , 40 NC, 9 ν_{e} CC, 7 τ_{e}

Next steps

- Some of the features are promising to differentiate ν_{τ} CC from other - <dE/dx>, Missing momentum, leading π^- energy, ...
- A BDT was trained, and it looks plausible to select τ_{μ} events
 - Will look into other channels: τ_e and τ_{had}
 - Try to look for more features: π^0 s in τ_{had} channel

Backup

Event display of each final state particle evt_1_Prong_1_EdepZX evt_1_tot_EdepZX evt_1_Prong_0_EdepZX 10² × tau mu 600 600 600 -20 3000 4000 5000 6000 7000 8000 9000 Z [mm] 9000 1000 2000 3000 4000 5000 6000 7000 8000 9000 Z [mm] 1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 0 Z [mm] evt_1_Prong_3_EdepZX evt_1_Prong_5_EdepZX evt 1 Prong 4 EdepZX 1000 2000 3000 4000 5000 6000 7000 8000 9000 Z [mm] 3000 4000 5000 6000 7000 8000 1000 2000 9000 2000 3000 4000 5000 6000 7000 8000 9000 1000 Z [mm] Z [mm] evt_1_Prong_8_EdepZX evt_1_Prong_9_EdepZX evt_1_Prong_7_EdepZX -200 -200 -200 -200 -400 -400 -400 -400

-600

-800

0

1000 2000 3000 4000 5000

6000

7000

8000

9000

Z [mm]

10⁻¹

-600

-800

0

1000 2000 3000 4000 5000 6000 7000 8000 9000 Z [mm]

Detector configuration in Geant4

	LArTPC	HadCal	MuonFind
Length (mm)	0 - 7000	7250 - 8300	8300 - 934

Jianming Bian, Wenjie Wu (UCI)

LArTPC

HadCal

MuonFinder

Work in progress

- Save all the hit information from G4 simulation
 - As the energy is very high, there is a large amount of hits for each event (~TB for 10000 neutrino events)
- Will do more analysis on the new MC data
 - Study the feature of all stable final state particles from the neutrino interaction
 - Event classification, background rejection

v_{τ} s in the detector

- Neutrino vertices are uniformly distributed in a 1x1x7 meter volume
- Neutrino energy/Interaction mode/FSL come from GENIE v3_00_06k
 - Flux comes from Weidong Bai, et. al. <u>2112.11605</u>

τ s in the detector

Jianming Bian, Wenjie Wu (UCI)

Decay mode	Branching ratio
Leptonic	35.2%
$e^- ar{ u}_e u_ au$	17.8%
$\mu^- ar{ u}_\mu u_ au$	17.4%
Hadronic	64.8%
$\pi^-\pi^0 u_ au$	25.5%
$\pi^- u_ au$	10.8%
$\pi^-\pi^0\pi^0 u_ au$	9.3%
$\int \pi^- \pi^- \pi^+ u_ au$	9.0%
$\pi^-\pi^-\pi^+\pi^0 u_ au$	4.5%
other	5.7%

https://arxiv.org/pdf/2007.00015.pdf

ν_{μ} s in the detector

- Neutrino vertices are uniformly distributed in a 1x1x7 meter volume
- Neutrino energy/Interaction mode/FSL come from GENIE v3_00_06k
 - Flux comes from *Felix Kling, et. al. <u>2105.08270</u>*

Neutrino flux

Felix Kling, et. al. <u>2105.08270</u> <u>Github</u>

FLArE10, 620m downstream from IP, 3000/fb

Jianming Bian, Wenjie Wu (UCI)

x Luminosity / 2

Weidong Bai, et. al. 2112.11605 Figure 12, Table 5

eta > 6.9 (radius 1 m at a distance of 480 m from IP)

GENIE simulation: muon spectrum

Felix Kling, et. al. <u>2105.08270</u>

Jianming Bian, Wenjie Wu (UCI)

Muon energy spectrum, area normalized Muon from tau decay is softer

GENIE simulation: muon spectrum

Jianming Bian, Wenjie Wu (UCI)

Bai, $\nu_{\tau} \rightarrow \tau^- \rightarrow \mu^-$ Mean: 102.9 GeV RMS: 136.7 GeV

Kling, $\nu_{\tau} \rightarrow \tau^- \rightarrow \mu^-$ Mean: 146.0 GeV RMS: 201.0 GeV

Muon energy spectrum, area normalized

