Resonances in $\bar{\nu}_e - e^-$ scattering at FLArE

based on arXiv:2112.03283 (PRD 2022) in collaboration with A. de Gouvêa, P. Machado and R. Plestid

Vedran Brdar

Resonances in $\bar{\nu}_e - e^-$ scattering at FLArE

First Glashow Resonance Event at IceCube

▶ $\bar{\nu}_e$ in the astrophysical flux \implies way to distinguish ν from $\bar{\nu}$

2/10

PeV partially contained events: shower with energy of 6.05 ± 0.72 PeV
 O(PeV) cosmic muon as BKG yields 10⁻⁷ events => rejected at 5σ

First Neutrino Interaction Candidates at LHC

 \blacktriangleright FASER ν is a 1.2 tonne detector located 480 m from the ATLAS interaction point containing emulsion films and tungsten plates

- FASER ν_2 will be a 10 tonne detector at FPF
- 2018 Pilot Run with 29 kg target during LHC Run 2
- background-only hypothesis is disfavored at $2.7\sigma \implies$ hint for ν -N scattering events

"Glashow-like" Events at Low Energies?

Resonances in $\bar{\nu}_e - e^-$ scattering at FLArE 4 / 10 FLArE Far Forward Physics working group meeting, July 2022

"Glashow-like" Events at Low Energies?

$$ar{
u}_e e^- o R^-$$

E 5/10

"Glashow-like" Events at Low Energies?

$$\overline{\nu}_{e}e^{-} \rightarrow \text{meson} \rightarrow \text{anything}$$
Breit-Wigner: $\sigma_{\text{res}} = (2J+1)8\pi \Gamma^{2} \operatorname{Br}_{\text{in}} \operatorname{Br}_{\text{fi}} \frac{s/M^{2}}{(s-M^{2})^{2}+M^{2}\Gamma^{2}}$

> pseudoscalar mesons: $\Gamma(\mathfrak{m} \rightarrow \overline{\nu}_{e}e^{-}) = \frac{G_{F}^{2}}{8\pi}f^{2}m_{lep}^{2}M\left(1-\frac{m_{lep}^{2}}{M^{2}}\right)|V_{\text{CKM}}|^{2}$

> vector mesons: $\Gamma(\mathfrak{m} \rightarrow \overline{\nu}_{e}e^{-}) = \frac{G_{F}^{2}}{12\pi}f^{2}M^{3}|V_{\text{CKM}}|^{2}$

> vector mesons: $\Gamma(\mathfrak{m} \rightarrow \overline{\nu}_{e}e^{-}) = \frac{G_{F}^{2}}{12\pi}f^{2}M^{3}|V_{\text{CKM}}|^{2}$

 $\overline{\nu}_{e}e^{-} \rightarrow \rho^{-} \rightarrow \pi^{0}\pi^{-}$

 $E_{\nu}^{res}(\rho^{-}) = \frac{(770\text{MeV})^{2}}{2m_{e}} \approx 580 \text{ GeV}$

alternative calculation using

 $\langle \pi^{-}(k_{1})\pi^{0}(k_{2})|V_{\mu}|0\rangle = (k_{1}-k_{2})_{\mu}F(q^{2})$

 $= \frac{1}{2}\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \int$

6 / 10

Event Rates

Experiment	$\rho^-, \pm \Gamma/2$	$\rho^-, \pm 2\Gamma$	$K^{-*}, \pm \Gamma/2$	$K^{-*}, \pm 2\Gamma$
$FASER\nu$	0.3	0.5	-	-
$FASER\nu 2$	23	37	0.7	3
FLArE-10	11	19	0.3	2
FLArE-100	63	103	2	8
DeepCore	3(1)	5(2)	-	-
IceCube	8 (40)	17(83)	-	-

$$R_W = rac{\sigma(ar{
u}_e e^-
ightarrow ext{hadrons})}{\sigma(ar{
u}_e e^-
ightarrow ar{
u}_\mu \mu^-)}$$

$$R = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$$

Resonances in $\bar{\nu}_e - e^-$ scattering at FLArE

Signature of ρ^- Resonance

cut on E_{π⁻} + E_{π⁰} to lie near 580 GeV
 θ_{νN} ~ 1/γ_{cm} ~ 28 mrad × √600 GeV/E_ν for deep inelastic scattering
 θ_{ππ} = 28 mrad √m_e/m_N × √600 GeV/E_ν =

 $0.7 \text{ mrad} \times \sqrt{600 \text{ GeV/E}_{\nu}}$ for $\overline{\nu} - e$ scattering

cut on charged track and photon multiplicity

► reconstruct the invariant mass of the $\pi^0 \pi^-$ pair, $m_{\pi\pi}^2 = m_{\pi^0}^2 + m_{\pi^-}^2 + E_{\pi^0} E_{\pi^-} \theta_{\pi\pi}^2$, and require it to lie within $\Gamma_{\rho} \sim 150$ MeV of $m_{\rho} \approx 770$ MeV

Sweeper Magnet for FASER $\nu 2$

IceCube:

▶ large background and difficult to identify $\pi^-\pi^0$ topology

8 / 10

► *S* : *B* ≈ 1 : 100

Signature of ρ^- Resonance at FLArE

given O(mrad) angular resolution π⁻ track and γγ would overlap
 nevertheless, efficient PID using dE/dx can be employed

(i) for the first 10 cm or so only the π^- will be visible

(*ii*) the emitted photons will not appear until only $\mathcal{O}(10)$ cm down the track where each of the γ will convert to e^+e^- pair (*iii*) bremsstrahlung photons produced by the π^- will also pair produce

forward-pointing "hadronic flashlight" that has discrete jumps in dE/dx and no hadronic activity from interaction vertex

▶ The production of charged-meson resonances in $\bar{\nu}_e - e$ scattering is an interesting and previously inaccessible SM neutrino reaction

▶ The production of charged-meson resonances in $\bar{\nu}_e - e$ scattering is an interesting and previously inaccessible SM neutrino reaction

► We estimate O(100) ρ⁻ meson resonance events at proposed FPF detectors

▶ The production of charged-meson resonances in $\bar{\nu}_e - e$ scattering is an interesting and previously inaccessible SM neutrino reaction

► We estimate O(100) ρ⁻ meson resonance events at proposed FPF detectors

Detection prospects at FLArE are promising? More ideas?