Continued discussion on configuration options. Milind Diwan with input from many

May 12, 2022

Basic detector requirements for FLARE

Item	Choice	Comments	
Liquid fill	LAr or LKr or LAr/LXe mix	LKr allows compact events and EM showers, but radioactivity may limit uti	
Cryostat and TPC dimensions	Keep the total to active volume ratio small. Need to fit into FPF space.	Cryostat, field cage, HV design must b integrated.	
Cathode/anode and gap size	Central cathode with two anode planes. (makes two drift volumes). Gap < 0.5 m transparent to light		
Photon readout	SiPM's. Cannot use PMTs to keep the unused volume small.	Will need large number of channels.	
Wavelength shifter for scintillation light	LAr: 128 nm, LKr: 150 nm, LXe: 170nm	DUNE development of ARAPUCA.	
SiPM density, timing resolution and trigger	This requires detailed simulations and R&D. A minimum density is needed for recognizin contained events versus muons for trigger. Timing resolution is needed to associate with LHC bunch.		
Anode electrode design	Pixels versus wires	Simple wire geometry may not be possible because of straight thru muor Need Simulation input.	
Anode readout pitch	2 to 5 mm	Depends on kinematic resolution need and also signal to noise.	
Electronics	Cold electronics for low noise; how do we optimize for best drift resolution		

	omments
-	

Cryostat options Very important for space considerations.

- Space in FPF hall currently is limited to 3.5 m X 3.5 m X 9.6 m for FLARE. • But despite the installation for th GTT membrane would be much easier.
- Further engineering might be needed, but we can settle on this option for now.

	Cryostat Inner Dimensions	Insulation Type	Insulation Thickness	Insulation density	Heat leak	Cold shield
ooNE	3.8m dia x 12 m	Polyurethane Foam	400mm	32 kg/m ³	~13 W/m²	No
S-GS	3.9m x 3.6m x 19.6m	Nomex honeycomb+pe rforated Al	665 mm+ (combined)	25-35 kg/m ³	7-22 W/m ²	Yes
JS- V	3.9m x 3.6m x 19.6m	AI extrusion+GTT foam	665 mm+ (combined)	25-35 kg/m ³	10-15 W/m ²	Yes
UNE	7.9m x 8.55m x 8.55 m	GTT membranc	800mm	90 kg/m³	~8 W/m²	No
Ar	3m x 5m x7m	GTT membrance	800mm	90 kg/m³	~8 W/m²	No
Ē	~(1m x 1m x 7m)					No?

Yichen Li

•80 cm GTT membrane occupies 1.6 m out of 3.5 m. More space might be needed for corrugations.

• The DUNE ND-LAR design has installation from top. This would also simplify things.

Simulations have confirmed that these dimensions allow reasonable containment of neutrino events in LAr and total energy measurement.

They also fit within the cryostat allowed transverse space.

Field perpendicular to the beam direction either 2 X 7 vertical modules with 0.45 m gap or 3 x 7 vertical modules or with 0.3 m gap

Field along beam direction 7 vertical modules with 0.5 meter gap. None of this is optimized

Nominal configuration To be detailed in a spread sheet and developed into a detail for a conceptual design parameters. (This is for the option with field perpendicular to the beam)

ryostat outer 3.5 m X 3.5 m X 9.6 m		Membrane	
Insulation thickness	0.8 m	including corrugations	
Detector dimension	1.8 m X 1.8m x 7 m	good for >90 % containment	
Fiducial volume	1 m x 1m x 7 m (10 tons)	Length may be adjusted later	
TPC Modules	2 X 7 or 3 X 7	Keep two options	
Module opt1 dimensions	0.9 m (W) X 1.8 m (H) X 1 m (L)	Central cathode: gap: 0.45 m	
Module opt2 dimensions	0.6 m (W) X 1.8 m (H) X 1 m (L)	gap: 0.3 m	
Anode design fiducial region	5 mm x 5 mm for 1 m x 1 m	80000 chan/mod	
Anode design containment	10 mm x 10 mm for 0.8 m x 1 m	16000 chan/mod	
photon sensor	Bare SiPM or X-ARAPUCA	~50 chan/mod	
Downstream cryo wall	80 cm	Can it be thinned down	
HADCAL	2 m x 2 m x (5 cm Fe + 1+1 cm scint, 15 layers) x (1.05 m)	Optimize for resolution	
Murange	•2 m x 2 m x (16 cm Fe + 1 + 1 cm scint, 2 layers) x (0.36 m)	Increase to 1 m to get clean mull	

Field along beam direction.

Cryostat outer	3.5 m X 3.5 m X 9.6 m	Membrane
Insulation thickness	0.8 m	including corrugations
Detector dimension	1.8 m X 1.8m x 7 m	good for >90 % containment
Fiducial volume	1 m x 1m x 7 m (10 tons)	Length may be adjusted later
TPC Modules	2 X 7 or 3 X 7	Keep two options
Module dimensions	1.8 m (W) X 1.8 m (H) X 1 m (L)	Central cathode: gap: 0.5 m
Module opt2 dimensions	0.6 m (W) X 1.8 m (H) X 1 m (L)	gap: 0.3 m
Anode design fiducial region	5 mm x 5 mm for 1 m x 1 m (pixels could be smaller)	80000 chan/mod
Anode design containment	10 mm x 10 mm for surrounding the central 1x 1 meter	? chan/mod
photon sensor	Bare SiPM or X-ARAPUCA	~50 chan/mod
Downstream cryo wall	80 cm	Can it be thinned down
HADCAL	2 m x 2 m x (5 cm Fe + 1+1 cm scint, 15 layers) x (1.05 m)	Optimize for resolution
Murange	•2 m x 2 m x (16 cm Fe + 1 + 1 cm scint, 2 layers) x (0.36 m)	Increase to 1 m to get clean muID

This option would work best with the Q-PIX style readout. Aleksey B.: If the drift if along the beam direction then we must worry about charge recombination since the ionization at the vertex will be ~10 MIPs.

What is Q-PIX ? The idea is to capture a waveform in time with minimum data load.

Q-Pix: Pixel-scale Signal Capture for Kiloton Liquid Argon TPC Detectors: Time-to-Charge Waveform Capture, Local Clocks, Dynamic Networks

D.Nygren, Yuan Mei, <u>https://arxiv.org/abs/</u> 1809.10213

Also see Asaadi's talk

https://indico.fnal.gov/event/22038/ contributions/65902/attachments/41450/50153/ QPix_FNALSeminar_Asaadi.pdf

	1	
vuitage [v]	0.9	
	0.8	
	0.7	
	0.6	
	0.5	
	0.4	
	0.3	
	0.2 3.5	
	3	
	2.5	
	2	
	1.5	
	1	
	0.5	
	0	
	4	0

Some organizational updates

Switch this current meeting to monthly starting with today.

Add another meeting for technical discussion on detector.

Provide more support for CERN experimentalist's monthly meeting run by Jamie Boyd.

The FPF short paper now has a citation https://www.sciencedirect.com/science/article/pii/S0370157322001235 The Forward Physics Facility: Sites, experiments, and physics potential Physics Reports, Vol 968, 19 July 2022.

What are we doing at SNOWMASS ? This is in Seattle (Washington State near the University of Washington) July 17 - July 26

MVD will be there the entire time. I can organize couple of 1/2 day workshops. workshop 1 dedicated to phenomenology and workshop 2 to detector options and simulations

MVD will coordinate with Jamie to see who might be coming to Seattle to see if we can have such a workshop.