Signal and background in FLArE

Jianming Bian, Wenjie Wu University of California, Irvine

May 12, 2022

Detector configuration in Geant4

	LArTPC	HadCal	MuonFind
Length (mm)	0 - 7000	7250 - 8300	8300 - 934

Jianming Bian, Wenjie Wu (UCI)

LArTPC

HadCal

MuonFinder

Simulation setup

- The vertices of neutrino interactions are uniformly distributed in the FV region (1x1x7 m)
- No angular smearing for the neutrino beam, all pointed at +z direction

Jianming Bian, Wenjie Wu (UCI)

ted in the FV region (1x1x7 m) +z direction

Signal and background

- Only consider beam neutrino background for now
- Decay modes of the tau lepton
 - tau_e: taus decay to electrons
 - tau_mu: taus decay to muons
 - tau_had: taus decay to hadrons
- Major background of tau_mu signal: numu CC events
- Major background of tau_e signal: nue CC events
- Major background of tau_had signal: NC scattering events from all neutrinos

Decay mode	Branching ratio
Leptonic	35.2%
$e^{-\overline{\nu}_e \nu_{\tau}}$	17.8%
$\mu^- ar{ u}_\mu u_ au$	17.4%
Hadronic	64.8%
$\pi^-\pi^0 u_{ au}$	25.5%
$\pi^- u_{ au}$	10.8%
$\pi^-\pi^0\pi^0 u_{ au}$	9.3%
$\pi^-\pi^-\pi^+ u_{ au}$	9.0%
$\pi^{-}\pi^{-}\pi^{+}\pi^{0}\nu_{\tau}$	4.5%
Other	5.7%

TABLE I. Dominant decay modes of τ^- . All decays involving kaons, as well as other subdominant decays, are in the "Other" category.

Jianming Bian, Wenjie Wu (UCI)

FIG. 2. Pictorial representation of hadronic tau (upper left) and leptonic tau (upper right) signals, and their corresponding backgrounds (lower).

10.1103/PhysRevD.102.053010

Final state particles

- Stable particles in the final state, including particles from tau decay
- Most tau_had have at least 1 π^- in the final state
- Neutrinos in the final state are invisible to the detector, contributing to the missing energy
 - Almost all numucc, nuecc have zero neutrino in the final state
 - NC events and tau_had have 1 neutrino, tau_mu and tau_e have 2 neutrino

Event display of each final state particle evt_1_Prong_1_EdepZX evt_1_tot_EdepZX evt_1_Prong_0_EdepZX 10² × tau mu 600 600 600 -20 3000 4000 5000 6000 7000 8000 9000 Z [mm] 9000 1000 2000 3000 4000 5000 6000 7000 8000 9000 Z [mm] 1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 0 Z [mm] evt_1_Prong_3_EdepZX evt_1_Prong_5_EdepZX evt 1 Prong 4 EdepZX 1000 2000 3000 4000 5000 6000 7000 8000 9000 Z [mm] 3000 4000 5000 6000 7000 8000 1000 2000 9000 2000 3000 4000 5000 6000 7000 8000 9000 1000 Z [mm] Z [mm] evt_1_Prong_8_EdepZX evt_1_Prong_9_EdepZX evt_1_Prong_7_EdepZX -200 -200 -200 -200 -400 -400 -400 -400

-600

-800

0

1000 2000 3000 4000 5000

6000

7000

8000

9000

Z [mm]

10⁻¹

-600

-800

0

1000 2000 3000 4000 5000 6000 7000 8000 9000 Z [mm]

Shower length of the final state lepton

- Assume reco. can find out the shower of the final state lepton
- tau_mu/numucc > tau_had > tau_e/nuecc

Deposited energy of the final state lepton

Average dE/dx in LAr of the final state lepton

• Total deposited energy in LAr / total shower length

Next steps

- Tau neutrino detection is challenging, giving the short lifetime of tau and the severe background
- We're exploring how to suppress the background, with a fake reconstruction based on truth information
 - There are work similar in progress for DUNE, but the energy scale is different

Backup

Detector configuration in Geant4

	LArTPC	HadCal	MuonFind
Length (mm)	0 - 7000	7250 - 8300	8300 - 934

Jianming Bian, Wenjie Wu (UCI)

LArTPC

HadCal

MuonFinder

Work in progress

- Save all the hit information from G4 simulation
 - As the energy is very high, there is a large amount of hits for each event (~TB for 10000 neutrino events)
- Will do more analysis on the new MC data
 - Study the feature of all stable final state particles from the neutrino interaction
 - Event classification, background rejection

v_{τ} s in the detector

- Neutrino vertices are uniformly distributed in a 1x1x7 meter volume
- Neutrino energy/Interaction mode/FSL come from GENIE v3_00_06k
 - Flux comes from Weidong Bai, et. al. <u>2112.11605</u>

τ s in the detector

Jianming Bian, Wenjie Wu (UCI)

Decay mode	Branching ratio
Leptonic	35.2%
$e^- ar{ u}_e u_ au$	17.8%
$\mu^- ar{ u}_\mu u_ au$	17.4%
Hadronic	64.8%
$\pi^-\pi^0 u_ au$	25.5%
$\pi^- u_ au$	10.8%
$\pi^-\pi^0\pi^0 u_ au$	9.3%
$\int \pi^- \pi^- \pi^+ u_ au$	9.0%
$\pi^-\pi^-\pi^+\pi^0 u_ au$	4.5%
other	5.7%

https://arxiv.org/pdf/2007.00015.pdf

HadCal Calibration

- In order to reconstruct the energy deposited in the HadCal, we'll need to calibrate it
 - The energy deposited in HadCal is proportional to the energy recorded by HadCal (the scintillator)
 - Good linearity

Deposited energy in MuonFinder

ν_{μ} s in the detector

- Neutrino vertices are uniformly distributed in a 1x1x7 meter volume
- Neutrino energy/Interaction mode/FSL come from GENIE v3_00_06k
 - Flux comes from *Felix Kling, et. al. <u>2105.08270</u>*

Angular variance

- τ^- , π^+ , π^- , p, ... (maybe we need to also include π^0 and γ)
- Most of events have tracks concentrate at one direction (variance $< 5^{\circ}$)

Jianming Bian, Wenjie Wu (UCI)

• Angular variance of charged tracks from the neutrino interaction w.r.t the direction of the neutrino beam

Neutrino flux

Felix Kling, et. al. <u>2105.08270</u> <u>Github</u>

FLArE10, 620m downstream from IP, 3000/fb

Jianming Bian, Wenjie Wu (UCI)

x Luminosity / 2

Weidong Bai, et. al. 2112.11605 Figure 12, Table 5

eta > 6.9 (radius 1 m at a distance of 480 m from IP)

GENIE simulation: muon spectrum

Felix Kling, et. al. <u>2105.08270</u>

Jianming Bian, Wenjie Wu (UCI)

Muon energy spectrum, area normalized Muon from tau decay is softer

GENIE simulation: muon spectrum

Jianming Bian, Wenjie Wu (UCI)

Bai, $\nu_{\tau} \rightarrow \tau^- \rightarrow \mu^-$ Mean: 102.9 GeV RMS: 136.7 GeV

Kling, $\nu_{\tau} \rightarrow \tau^- \rightarrow \mu^-$ Mean: 146.0 GeV RMS: 201.0 GeV

Muon energy spectrum, area normalized

