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Gravity waves in general

✔ Subsonic (incompressible) waves: buoyancy as the restoring force
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Zone radiative Zone convectiveZone radiative

 Propagation diagram

.

Internal gravity waves (IGW) in the Sun

✔ Propagation regions:
- between 0 < r < 0.7 Rsun for 0 < ν < 400 μHz
- 0 < ν < 200 μHz: evanesecent in the surface convective zone
- 200 < ν < 400 μHz : coupling with surface acoustic modes = “Mixed modes”
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Energy ray paths in 3D

✔ Generated by the surface convection motions
✔ Energy propagating in inclined planes for given l and m
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Alvan+2014,2015

Convective Zone

Radiative Zone
 ⇒ IGW



  

Energy ray paths in 3D

✔ Spiraling around the stellar center  pattern depends on the wave frequency→
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Alvan+2014,2015

Equatorial plane
in the radiative zone

ν = 10 μHzν = 10 μHz ν = 40 μHz



  

Damping in the radiative region (only...)

✔ IGW induces local excess/deficiency of thermal internal energy
- Radiative diffusion tends to smooth out these thermal gradients.     
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✔ Two questions:
- Deposit of energy in the medium   → transport efficiency ?
- Finite amplitude  → detectability (question of g-modes) ?

 → Need to know the wave amplitude ...   



  

IGW generation in numerical simulations of the Sun
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Andersen 1996
 → 2D Cartesian geometry
 → Open boundaries
 → Efficiency < 0.1% = progressive IGW

 

Dintrans+2005
 → 2D Cartesian geometry 
 → Closed boundaries
 → Efficiency up to 40% = eigenmodes

 

 → Discrepancies: toward realistic setup and spectral studies.



  

IGW generation in numerical simulations of the Sun
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Rogers+2005,2006
 → Polar geometry, realistic thermal structure
 → Flat wave spectrum
 → But enhanced thermal diffusivity

  = overestimated flux / generation

 



  

IGW generation in numerical simulations of the Sun
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Alvan+2014,2015
 → Spherical geometry geometry, realistic thermal structure
 → Gaussian at low frequency / Power law at high frequency
 → Still enhanced thermal diffusivity, question of the thermal relaxation...

 



  

IGW generation in numerical simulations of the Sun
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Le Saux+2022
  → ~ Same spectral shape as Alvan+2014
 → Study of the impact of the enhanced thermal diffusivity
 → Conclude that simulations must be considered with caution ...

 

Overall, numerical simulations are good guides, but still not realistic enough 
(cf. simu Re ~ 105 / stars Re ~1012)

 → Need for complementary semianalytical estimates !
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1- Excitation by turbulent Reynold stress

Several excitation models, but a general mechanism/expression
- Pressure matching at the rad/conv interface (Press 1981, Garcia-Lopez+1991, Zahn+1997)
- Reynold forcing through the convective bulk (Kumar 1999, Lecoanet 2013)
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1- Excitation by turbulent Reynold stress

Several excitation models, but a general mechanism/expression
- Pressure matching at the rad/conv interface (Press 1981, Garcia-Lopez+1991, Zahn+1997)
- Reynold forcing through the convective bulk (Kumar 1999, Lecoanet 2013)
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 Alvan+2014

Zoom

2- Excitation by penetrative convection
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 Alvan+2014

Zoom

2- Excitation by penetrative convection

Penetration zone in the Sun:

Péclet number:  Pe~ 105 -107

 ⇒ the plume keeps its thermal identity
 ⇒ Efficient buoyancy braking!

To the contrary, in simulations : 

Pe ~ 1-102  the plume is more rapidly mixed⇒
 ⇒ Weak buoyancy braking, lack of realism ...
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2- Excitation by penetrative convection

✔ Driving = Ram pressure exerted by an ensemble of incoherent plumes (Pinçon+2016)

- Momentum equation:

- Radial plume velocity
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2- Excitation by penetrative convection

✔ Driving = Ram pressure exerted by an ensemble of incoherent plumes (Pinçon+2016)

- Momentum equation:

- Radial plume velocity

✔ No heat exchange during the excitation (adiabatic approximation)
 → Ram pressure dominates on the plume lifetime.

✔  Excitation assumed stationary, ergodic and uniform horizontally
 → Statistical approach: semi-analytical approximation of the wave energy flux.
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t

Plume kinetic energy 
flux at the BCZ

Temporal correlation between 
the plumes and the waves

Horizontal correlation

Plume Froude number 
at the BCZ

2- Excitation by penetrative convection

✔ Outgoing flux at the BCZ as a function of pulsation  andω  angular degree l 
(Pinçon 2016) 

✔ Excitation efficiency
 → Froude number ~ reaction of the medium to the plume penetration.
 → In the Sun,  FR ~ 10⁻³
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Turbulent pressure vs Penetrative convection :

Shape : decreasing power laws vs Gaussian
Degree at maximum : size of convective eddies > size of plumes at the BCZ

Total flux : ~ 0.1 % vs ~ 0.6 % of the solar energy flux

(Note : the total spectra is a weighted sum of both contributions)

Pinçon+2016

Penetrative convection vs Reynold stress
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Turbulent pressure vs Penetrative convection :

Shape : Gaussian vs decreasing power laws
Degree at maximum : size of convective eddies > size of plumes

Total flux : ~ 0.1 % vs ~ 0.6 % of the solar energy flux

l ~ 30

Alvan 2014

Penetrative convection vs Reynold stress
Pinçon+2016
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Detectability: the quest of the g-modes.

✔ Resonant gravity modes = potential diagnostic of the solar core:

- Core stratification  complementarity with neutrinos ⇒ (e.g., Salmon+2021)
     ⇒ constraints on metallicity, nuclear reactions, electron screening

- Constraint on the angular momentum redistribution (e.g., Eggenberger 2019)
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Still no robust detection

✔ Evanescent, very small amplitudes at the solar surface
- Several claims of detection, but no confirmation (e.g., Brookes+1976,
  Severnyi+1976, Delache+1983, Thomson+1995, Turck-Chièze+2004, Garcia+2007)

✔ Most recent claim by Fossat+2017,2018
- Search for the signature of g-modes in the p-mode spectrum
- Not reproduced (Schunker2018, Appourchaux 2019)
- p- and g-mode coupling too small (Scherrer 2019, Böning 2019)
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Still no robust detection

✔ Evanescent, very small amplitudes at the solar surface
- Several claims of detection, but no confirmation (e.g., Brookes+1976,
  Severnyi+1976, Delache+1983, Thomson+1995, Turck-Chièze+2004, Garcia+2007)

✔ Most recent claim by Fossat+2017,2018
- Search for the signature of g-modes in the p-mode spectrum
- Not reproduced (Schunker2018, Appourchaux 2019)
- p- and g-mode coupling too small (Scherrer 2019, Böning 2019)

✔ Theoretical estimates of the mode amplitudes are thus useful to 
- Guide observational strategies and future instrument design
- When detected, diagnostics of the excitation and damping mechanisms
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Semianalytical estimates

✔ Mean g-mode amplitude = balance driving/damping

✔ Most recent estimates (see also Goldreich+1977, Gough+1985)

1) ν < 100 μHz: radiative damping, analytical
- Kumar+1996: Reynold stress, Gaussian eddy-time correlation.
- Belkacem+2011: Reynold stress, Lorentzian eddy-time correlation (simus 3D).
- Pinçon+2021: Penetrative convection, exponential plume time profile

2) ν > 100 μHz: mode-convection interaction dominates damping, uncertain …
27

Driving Damping rate Stationary over long 
timescale



  

Semianalytical estimates
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Belkacem 2022

???



  

A new estimate for the solar mixed modes

29

Belkacem 2022

✔ ν > 200 μHz: Same properties as low-order acoustic radial modes in the envelope
 → Assumption: similar driving and damping for close frequencies
 → Their amplitudes are related

✔ Estimate of the radial mode amplitude in  400 μHz >  > 200 Hzν μ
 → Extrapolation from the observed low-frequency radial modes (1mHz >  > 2mHz)ν

Radial
Mixed



  

g-modes amplitudes: current status
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???

Belkacem 2022

✔ Low frequency domain (10 μHz <  < 100 Hz) more suited to detect g-modesν μ
✔ Theoretical uncertainties ~ gap with the detection threshold (e.g., GOLF)

 → Need for improvement in the description of convection.
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IGW transport in current stellar models

✔ A quite “simple” formalism in a first step

- Internal structure: - Spherical (1D), shellular rotation  (r,Ω ) ~ (r) (Zahn 1992)θ Ω

- Propagation: - Horizontally-averaged radial wave flux
 - Effect of frequency Doppler-shift
 - No Coriolis force/rotation gradient effect

- Excitation/damping: -  Available Reynold stress / penetrative convection models
     - Quasi-adiabatic damping (Press 1981)
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IGW transport in current stellar models

✔ Angular momentum transport equation

Meridional circulation Shear turbulence IGW



Radiative damping
with

Radiative diffusivity Wave intrinsic frequency  

Flux at the top of the 
radiative zone

δΩ=Ω(r )−ΩBCZand
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IGW transport in current stellar models

✔ Angular momentum transport equation

Meridional circulation Shear turbulence IGW



Radiative damping
with

Radiative diffusivity Wave intrinsic frequency  

Flux at the top of the 
radiative zone

δΩ=Ω(r )−ΩBCZand
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IGW transport in current stellar models

✔ Angular momentum transport equation

Meridional circulation Shear turbulence IGW

✔ Transport results from 3 ingredients: Damping + Excitation + Rotation contrast



Transport efficiency : a simple estimate
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Get a stellar model…

Assume a given rotation profile…

- assumed smooth here.
- varying amplitude of the rotation contrast :

δΩ=Ωcore−ΩBCZ
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Transport efficiency : a simple estimate
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Get a stellar model…

Assume a given rotation profile…

- assumed smooth here.
- varying amplitude of the rotation contrast :

... and compute (at a given time)

δΩ=Ωcore−ΩBCZ

Criterion : IGW are efficient if   TL  <   Evolution/contraction timescale.

T L ∼ ρr2Ω
−∇ .(FJ , w)

Local timescale on 
which IGW can 

modify the rotation

Angular momentum 
density

Angular momentum 
density

Divergence of the 
wave flux



Transport efficiency in the solar case
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...IGW can modify rotation on  TL < 10Gyr .

...plume-induced IGW are more efficient
than turbulence-induced IGW.

The higher the rotation contrast,
the more efficient the transport by IGW



Transport efficiency in the solar case
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Transport efficiency in the solar case
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Transport efficiency in the solar case
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In the Sun, 

...IGW can modify rotation on  TL < 10Gyr .

...plume-induced IGW are more efficient
than turbulence-induced IGW.

The higher the rotation contrast,
the more efficient the transport by IGW

⇒ IGW can efficiently slow down the core if δΩ >  δΩth (~ 0.1μHz in the Sun)

γdamp∼(ω+mδΩ)−4



Initial state
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At a time t=t0

δΩ0

Regulation mechanism driven by IGW ?
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Regulation mechanism driven by IGW ?



Core contraction
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Evolution, log g

Initial state

Threshold
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δΩ = δΩ + ε
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At a time t=t0

δΩ0

Regulation mechanism driven by IGW ?
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At a time t=t0

δΩ0

Regulation mechanism driven by IGW ?



Core contraction
δΩ  

δΩ > δΩth

Subgiants

           δΩ ~ δΩth     

IGW braking
δΩ    

δΩ < δΩth

Evolution, log g

Initial state

Quasi-static state

Threshold
δΩth

 ⇒ The system reaches a 
quasi-static state where

 δΩ ~ δΩth 
δΩ = δΩ + ε δΩ = δΩ - ε'
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At a time t=t0

δΩ0

Regulation mechanism driven by IGW ?



  → Low-frequency IGW can slow down subgiants...
...but still insufficient for Red Giants.
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δΩ

IGW-driven regulation in subgiant stars ?

- Good agreement!

 
- δΩth increases to 
counterbalance the 
increase of the 
radiative damping

δΩobs ~ δΩth 

γdamp∝N 2
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Talon+2005

Age after ZAMS (Gyr)

Evolutionary models including transport by IGW

✔ Talon+2005, Charbonnel+2005, Mathis+2013
 → Account for shear turbulence + meridional circulation + IGW.
 → Can somehow explain the “flat” solar rotation profile.
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Talon+2005

Age after ZAMS (Gyr)

Evolutionary models including transport by IGW

Charbonnel+2008
Hyades

✔ Talon+2005, Charbonnel+2005, Mathis+2013
 → Account for shear turbulence + meridional circulation + IGW.
 → Can somehow explain the “flat” solar rotation profile.
 → Explain the Li dip observed in stellar clusters (cf mass dependence of excitation).
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✔ Talon+2005, Charbonnel+2005, Mathis+2013
 → Account for shear turbulence + meridional circulation + IGW.
 → Can somehow explain the “flat” solar rotation profile.
 → Explain the Li dip observed in stellar clusters (cf mass dependence of excitation).
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 → Explain the Li dip observed in stellar clusters (cf mass dependence of excitation).
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Talon+2005

Age after ZAMS (Gyr)

✔ Talon+2005, Charbonnel+2005, Mathis+2013
 → Account for shear turbulence + meridional circulation + IGW.
 → Can somehow explain the “flat” solar rotation profile.
 → Explain the Li dip observed in stellar clusters (cf mass dependence of excitation).

Evolutionary models including transport by IGW

Charbonnel+2008
Hyades

. . .
No wind
No IGW

Wind
No IGW

Wind
IGW
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Talon +2002

Going beyond this simple picture

✔ Shear Layer Oscillation

- Wave/shear interaction
- Very localized at the BCZ
- Impact on global evolution ?

 → Need for multi-timing method...

✔ And more to tackle ...
 → Non-adiabatic effects (in progress)
 → Non-linear waves, turbulence in radiative zones
 → Effect of Coriolis acc.
 → Transport of chemical elements (e.g., Stokes drift, wave breaking, ...)



  

Concluding remarks

✔ Gravity waves in the Sun and in stars:
- Invoked for more than 30 years (e.g., Schatzmann 1993).
- Available “simple” prescriptions, a few evolutionary computations.

✔ Potential probing of the solar core: the quest of g-modes
- No robust detection, low-frequency range more suited for a future detection.
- Need improvements in the description of convection to be more realistic.

✔ Transport of AM and chemical elements:
- Very promising (solar an subgiant rotation, Li abundance)
- But still need to go beyond the current approximations.
- Using complementarity between semianalytical developments and simulations.
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Effect of the Coriolis force at very low frequencies

Previous excitation/propagation wave models neglect the Coriolis force

-              this approximation fails (even for slow rotators)⇒

Local Dispersion relation (e.g., Gerkema 2005):

New behaviors : - Propagative inertial waves in convective regions 
  - Evanescent sub-inertial waves in radiative regions

ω≾Ω

Coriolis 
parameters

André 2017
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Impact on the excitation ?

André 2017

 ⇒ How the Coriolis force influence the wave excitation by penetrative plumes ?
    (Note : Local approach valid only for horizontal wavelength much smaller than the radius)

Traditional approximation fails at these frequencies (e.g., Eckart 1960, Mathis 2014)…

 ⇒ Complex GLOBAL 2D problem since no more separable in the radial and latitudinal                  
      coordinates

… BUT stil analytically tractable in the non-traditional LOCAL f-plane ! 
(e.g., Mathis 2014, Augustson 2020)
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Preliminary results for a Sun

⇒Depending on the latitude and frequency, the wave flux is increased/decreased.

Flux withrotation
Flux without rotation
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Preliminary results for a Sun

 ⇒ But it also depends on the horizontal direction of propagation !

Flux withrotation
Flux without rotation
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Preliminary results for a Sun

 ⇒ But it also depends on the horizontal direction of propagation !

 ⇒ Complex horizontal dependence : work in progress (with S. Mathis & K. Augustson)

Flux withrotation
Flux without rotation
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