Kunitomo & Guillot (2021) A&A, 655, A51 Kunitomo, Guillot & Buldgen (2022), A&A, 667, L2

© NASA/JPL-Caltech/R. Hurt

Solar models with the evolving composition of accretion Masanobu Kunitomo (Kurume U., OCA 2023/11-2024/10) T. Guillot (OCA), G. Buldgen (Univ. Geveva)

> The future of solar modelling 2023/Sep/7 @ Sierre

Cloud

20000 au

Protoplanetary disk

Outflow

Protostellar Envelope

Forming disk

and the read of the second second

500 au

Planetary system

Credit: Bill Saxton, NRAO/AUI/NSF

Young Sun

© NASA/JPL-Caltech/R. Hurt

Accretion

Protoplanetary disk

Masanobu Kunitomo

Solar models w/ planet formation processes

structures of stars

e.g., Hartmann+1997, Hosokawa+2011, Baraffe+2009, 2010, 2012, Tognelli+2016

Low-velocity

Kunitomo+2017

 Luminosity spreads in clusters e.g., Hillenbrand2009, Jeffries2012, Cao+2021

Kunitomo+2018

- λ Boo stars e.g., Murphy+Pauzen2017
- Solar twins e.g., Meléndez+2009
- e.g., Spina+2021 Binaries

<u>Kunitomo+2021, 2022</u>

• Solar modeling problem

nposition

Decrease due to updates in atm. models (e.g., $1D \rightarrow 3D$, non-LTE)

See also Asplund+2021

"Solar abundance problem"

Montalban+2006, Basu+Antia 2008, Buldgen+2019, Orebi Gann+2021, Christensen-Dalsgaard 2021

Our idea: composition gradient?

Composition gradient in the solar interior?

present day

Small composition gradient

Larger gradient due to star formation processes?

Accretion onto the proto-Sun

Accretion = injection of disk matter

Hartmann+2016; see also Hosokawa+Omukai2009, Machida+2010, Inutsuka2012, *Tomida*+2013

Planet formation processes

~km planetesimals

planets

rapidly fall onto the star Adachi+1976

Accretion onto the proto-Sun

Accretion = injection of disk matter

Hartmann+2016; see also Hosokawa+Omukai2009, Machida+2010, Inutsuka2012, *Tomida*+2013

Planet formation processes

~cm "pebbles"

planetesimals

~km

planets

Evolving composition of accretion flow

rapidly fall onto the star Adachi+1976

Early phase: dusty accretion (high-Z)

HL Tau ALMA partnership 2015

Late phase: dust-poor accretion (low-Z)

dust emission

PDS 70 Benisty+2021

Accretion onto the proto-Sun

Accretion = injection of disk matter

Hartmann+2016; see also Hosokawa+Omukai2009, Machida+2010, Inutsuka2012, *Tomida*+2013

Planet formation processes

~cm "pebbles"

planetesimals

~km

planets

Evolving composition of accretion flow

rapidly fall onto the star Adachi+1976

Accretion onto the proto-Sun

Accretion = injection of disk matter

Hartmann+2016; see also Hosokawa+Omukai2009, Machida+2010, Inutsuka2012, *Tomida*+2013

Planet formation processes

~µm dust arains

~cm "pebbles"

planetesimals

~km

planets

Evolving composition of accretion flow

rapidly fall onto the star Adachi+1976

Evolving composition of accretion

- based on planet formation processes
- initial: 0.1 M_{\odot} , \dot{M} : Hartmann+1998

Simulation

- stellar evolution code MESA + accretion (Paxton+2011, Kunitomo+2017, 2018, 2021)
- optimization w/ Simplex method Nelder+Mead 1965

Input parameters

- input: convection, initial composition, evolving composition of accretion
- target: *L*, *T*_{eff}, surface composition, helioseismic constraints

see Ayukov+Baturin2017 "extended calibration"

Vethod

Input parameters

Metallicity profile of the present-day Sun

Kunitomo+Guillot 2021

central metallicity increases by ~5%

• only in the central region $(\leq 0.2 R_{\odot})$

pebble drift

~cm dust rapidly fall

Early phase (≲1.7 Myr)

Late phase (2–10 Myr)

• high-Z accretion due to pebble drift • fully convective proto-Sun Homogeneously high-Z solar interior

• **low-Z accretion** (e.g., dust depletion) \rightarrow low-Z solar surface

central region becomes radiative composition gradient! → high-Z core remains

only in the radiative central region

radiative

convective

Does the compositional gradient affect the sound speed profile and neutrino fluxes?

Sound speed profile is not affected

Kunitomo+Guillot 2021

- The sound speed anomaly at ~0.7 R_{\odot} is not improved
- **Planet formation processes affect composition** only in the central region

Kunitomo+Guillot 2021

see also Christensen-Dalsgaard+2009, 2010, Serenelli+2009, Villante 2010, Buldgen+2019

- The sound speed anomaly at ~0.7 R_{\odot} is not improved
- Planet formation processes affect composition only in the central region
- ~12–18% opacity increase improves the profile even better than the GS98 SSM
- **Compatible with the recent experiments** *Bailey+2015, Nagayama+2019*

Kunitomo+Guillot 2021

see also Christensen-Dalsgaard+2009, 2010, Serenelli+2009, Villante 2010, Buldgen+2019

- The sound speed anomaly at ~0.7 R_{\odot} is not improved
- **Planet formation processes affect composition** only in the central region
- ~12–18% opacity increase improves the profile even better than the GS98 SSM
- **Compatible with the recent experiments**

Kunitomo+Guillot 2021

see also Christensen-Dalsgaard+2009, 2010, Serenelli+2009, Villante 2010, Buldgen+2019

- The sound speed anomaly at ~0.7 R_{\odot} is not improved
- **Planet formation processes affect composition** only in the central region
- ~12–18% opacity increase improves the profile even better than the GS98 SSM

Compatible with the recent experiments Bailey+2015, Nagayama+2019

Kunitomo+Guillot 2021

see also Christensen-Dalsgaard+2009, 2010, Serenelli+2009, Villante 2010, Buldgen+2019

- The sound speed anomaly at ~0.7 R_{\odot} is not improved
- **Planet formation processes affect composition** only in the central region
- ~12–18% opacity increase improves the profile even better than the GS98 SSM

Compatible with the recent experiments Bailey+2015, Nagayama+2019

All flavors @ Earth

All flavors @ Earth

• With ~12–18% opacity increase, helioseismic and spectroscopic observations are well reproduced ($\chi^2 \leq 0.5$)

Kunitomo+Guillot 2021; see also Bahcall+2005, Christensen-Dalsgaaard+2009, Bailey+2015, Buldgen+2019

However, inconsistent with neutrino observation

• With ~12–18% opacity increase, helioseismic and spectroscopic observations are well reproduced ($\chi^2 \leq 0.5$)

Kunitomo+Guillot 2021; see also Bahcall+2005, Christensen-Dalsgaaard+2009, Bailey+2015, Buldgen+2019

- However, inconsistent with neutrino observation
- Planet formation processes increase neutrino fluxes

→ consistent with neutrino obs.! see also Serenelli+2011, Zhang+2019

Neutrino, helioseismic & spectroscopic observations can be reproduced

Solar abundance problem can be solved by star & planet formation processes

- Higher ⁸B, ⁷Be, CNO and lower pp, pep fluxes due to planet formation processes see also Serenelli+2011, Zhang+2019
- All the observed fluxes are reproduced within $\sim 1\sigma$

Why does planet formation affect neutrinos?

Neutrino fluxes (= nuclear reaction rates) strongly depend on temperature

$$\Phi(^{8}B) \propto T_{center}^{25}$$

$$\Phi(^{7}Be) \propto T_{center}^{11}$$

$$\Phi(CNO) \propto T_{center}^{20}$$

Bahcall+Ulmer1996

Planet formation processes induces higher central metallicity

- → higher opacity
- → higher temperature
- → higher neutrino fluxes

thermal energy ~ keV (~10⁷ K)

~MeV Coulomb barrier vs tunnel effect

Realistic Z_{accretion} model

- theory of dust coagulation & drift
- observational constraints

e.g., Kobayashi+Tanaka 2021, Roman-Duval+2020, Kama+2015

More detailed comparison w/ obs.

• surface Li, rotation profile

Eggenberger+2022

Additional input physics

• rotational diffusion ((M)HD instabilities)

• solar winds (~0.02 M_{\odot} for 4.6 Gyr?)

Suzuki+2013, Zhang+2019

Implications for other stars

• solar twins (e.g., 16 Cyg), δ Scuti stars, etc. *Kunitomo+2018, Deal+2015, Steindl+2022*

Future prospects

Yang2022

Eggenberger+2022

Summary

- We simulated the formation and evolution of the Sun focusing on the evolving composition of accretion flow and found
 - planet formation processes can increase the central metallicity by up to 5%
 - models including both planet formation processes and opacity increase reproduce spectroscopic/helioseismic/neutrino constraints

Kunitomo+2022, A&A

