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Why care about stellar-mass black holes?

The “No-Hair” theorem

Every astrophysical black hole is fully
characterized by two numbers:

M = mass,
a=spin.

Black holes are as simple as
elementary particles (in a sense).

Energy efficiency of nuclear fusion: ~0.7%
Energy efficiency of accretion onto a black hole: ~10-40% !!!



Dynamically confirmed black holes

Cyg X-1: the first BH candidate
Bolton (1972), Webster & Mardin (1972)

24 BHs with dynamical mass

measurement
McClintock &Remillard 2006, Casares & Jonker 2014

21 Galactic, 3 in nearby galaxies

. 33 more BH candidates
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Measuring the the spin of Black Holes
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The spin of 9 stellar BHs measured with the continuum fitting method
McClintock etal. (2011, 2014)




The detection
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Detection with confidence.
This means that the rate at which a
signal analogous to GW150914
is created by noise is less than 1in
every 203,000 years.

3 solar masses of energy is what was
released by gravitational waves.
10 times more luminous that all the
stars of the Universe!!!

o N B O @
Normalized amplitude

Chirp Mass

(mymy)3/°

(my + my)/®

M =



http://www.physics.org/article-questions.asp?id=103

Doubling the sample of known BH masses

Masses in the Stellar Graveyard
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Predicted Masses for Single Black Holes

Weak wind
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Minimum metallicity: Z < 0.003

Indirect formations channels for “heavy” black holes have been suggested, but are unlikely:
e.g. BH+star mergers (Mapelli & Zampieri 2014; Ziosi 2014)
or star+star mergers (Portegies Zwart et al. 1999; c.f. Glebbeek et al. 2009)



Metallicity Evolution of the Universe

age of the universe (Gyr)
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Measurements of spin in BH XRBs and BBHs
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Black hole X-ray Binaries
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McClintock etal. (2011, 2014)
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The spin of 9 stellar BHs measured with the continuum fitting method
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Binary black hole mergers
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Are the two sets of measurements consistent

with our current understanding of binary evolution?




Measurements of spin in BH XRBs and BBHs

Black hole X-ray Binaries Binary black hole mergers
The spin of 9 stellar BHs measured with the continuum fitting method
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The observed BH spin does not have a memory of the initial rotation of

stars but is a result of binary interaction phases.

Fragos & McClintock (2015); Qin, Fragos et al. (2018); Qin, Marchant, Fragos et al. (2019); Bavera, Fragos et al. (2019)




Formation Channels of Binary BHs

“Chemically Homogeneous” Field Binary Evolution
Dynamical Black Hole Binary Formation

“Classical” or “common envelope” Binary Evolution



“Classical” Field Binary Evolution
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“Classical” Field Binary Evolution

TIME [Myr] Belczynski etal. (2016(1,[9) a[Ro] e
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Understanding the observed BBH population

N —1
Rdet,Ol/OZ ~ 13 yr

01/02 model predictions B O3 model precitions —8— LIGO-Virgo Collaboration (LVC) data

Bavera, Fragos et al. (2019)




The origin of spin in coalescing binary black holes

Bavera, Fragos et al. (2019)




The origin of spin in coalescing binary black holes

Bavera, Fragos et al. (2019)
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Probing BBH formation at hight redshift

design adLIGO sensitivity
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BBH formation from pop-Ill binaries

The different radial evolution and envelope structure of pop-lll stars
help the stability of binary mass-transfer events

ZAMS (Poplll binary)
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BBH formation efficiency ~1% 72\ -y

~1-2 orders of magnitude higher that pop-I/II o e .

Inayoshi et al. (2017)
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BBH formation from pop-lll binaries

Can we observe pop-Illl binary black-hole mergers?

Hartwig et al. (2016)

our model, Pop III

our model, Pop I/II
Kinugawa+16, Pop III
Belczynski+16, Pop /11
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Hartwig et al. (2016)
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see also Belczynski et al. (2017)
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Probing the formation ofthe@#lack holes
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Accreting Black Holes in the Early Universe
The Deepest X-ray Survey:The 4Ms CDF-S

Xue et al. 2011
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Mineo et al. (2012)




Evolution of X-ray Binaries across Cosmic Time

Fragos et al. (2013a,b); Madau & Fragos (2017)
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Radiative feedback from XRBs

X-ray photons have long mean free path

Mirabel et al.,2011
f,=0.1
f,=1
f,=10
Lx =3.4 x 10" £ SER ergs”’
T X 1 Mg yr~! e
Furlanetto (2006)
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Results are sensitive to:
o Star-formation history @ z>8
o emission spectrum of X-ray binaries

o X-ray binary formation efficiency
from pop-Ill stars

See also:
Fialkov & Barkana (2014)
Mesinger et al. (2013)
Madau & Fragos (2017)
Arpan et al. (2017)



Take-Home Messages

® Gravitational waves from coalescing binary black holes opened a new window to
massive binary evolution (at low metallicity). Black hole spin carries important
information about the formation history of black hole binaries.

® Pop-Ill binaries can produce coalescing binary black holes very efficiently, but their
star-formation history renders them invisible to current GW observatories

® Accreting black holes at z>8 dominate the X-ray background, making them a non-
neqligible feedback source and perhaps leaving a distinct signature in 21cm

® Long Gamma-ray burst may be closely linked to binary black hole formation,
providing a view of black hole formation at redshifts not accessible to GW and X-rays




