Building-up Pop III IMF

in the Milky Way-like galaxies

Shingo HIRANO (Kyushu Univ., Japan)

Simplified "RECIPE" of first star formation

Semi-analytic model: formation of MW-like galaxies (~1012 M_☉ at z=0)

IMF construction: first stars formed during the galaxy formation

First Stars (1st-generation stars)

mark the end of the "Cosmic Dawn"

Pop III (zero-metallicity $Z/Z_{\odot} = 0$) stars formed from the primordial gas (BBN elements: H, He, Li) at $z \sim 20$ (from z = 50 to 15).

They have not directly observed yet.

Formation scenario of first stars

can be verified indirectly by comparing with observations.

1st-gen. stars

formed with

- M_{star}
- V_{rot}
- M_{halo}

2nd-gen. star

Surviving star

First stars born in our Galaxy

Can we construct Pop III IMF in the MW-like galaxies?

Problem | Computational cost of the simulation of first star formation in a full consistent manner.

"# of first star formation in MW"

$$\sim M_{MW} / M_{minihalo} = 10^{12} / 10^6 = 10^6 !$$

Simplified "RECIPE" of star formation

for the galaxy formation & evolution

Present-day case → IMF, star formation efficiency

Primordial case → Correlation between the stellar properties and the physical state of the star formation cite

Formation of the first stars

from the cosmological initial condition to the zero-age main sequence phase

How massive?

Jeans mass of the star-forming cloud

How massive?

 $M_{\text{Jeans}} = 1000 \left(\frac{T_{\text{Jeans}}}{200 \, [\text{K}]}\right)^{1.5} \left(\frac{n_{\text{H}}}{10^4 \, [\text{cm}^{-3}]}\right)^{-0.5} \, [\text{M}_{\odot}]$

Jeans mass of the star-forming cloud

Low- / High-mass ends

Jeans mass of the star-forming cloud

Mass prediction of (single) first star

depending on the physical properties of the formation cite

J. (2015)

HMBH

 f_{HD}

#H15

30

1000

25

Mass prediction of depending on the physical properties of the formation o

1) Thermal evolution of the collapsing gas cloud

- We classify the minihalo into two thermal paths, H₂-/HD modes by using new criterion:

$$M_{\rm mh} \ge 3.5 \times 10^5 \left(\frac{1+z}{20}\right)^{-5} {\rm M}_{\odot}$$

2 Mass contraction rate at Jeans scale

- We calculate the mass contraction rate at the Jeans scale from two parameters, $\{z, M_{mh}\}$, for two modes by using Equation (8) in H15:

TŪ

$$\dot{M}_{\rm Jeans, H_2} = 3.0 \times \dot{M}_{\rm virial}$$
 $\dot{M}_{\rm Jeans, HD} = 0.3 \times \dot{M}_{\rm virial}$
 $\dot{M}_{\rm virial} = 1.1 \times 10^{-3} \left(\frac{1+z}{20}\right)^{3.5} \left(\frac{M_{\rm mh}}{4 \times 10^5 \,\rm M_{\odot}}\right)^{1.75}$

③ Pop III stellar mass

- $M_{\rm fs}$ is obtained by substitution the above rate to Equation (7) in H15:

$$M_{\rm fs} = 250 \left(\frac{\dot{M}_{\rm Jeans}}{2.8 \times 10^{-3} \,\mathrm{M}_{\odot} \,\mathrm{yr}^{-1}} \right)^{0.7} \,\mathrm{M}_{\odot}$$

10⁵

10

15

20

Redshift

Fragmentation of accretion disk

3D AMR RHD simulation (Sugimura, SH et al., in prep)

Number of first stars per minihalo

Susa (2019)

N_{frag} = 10 - 100 at the beginning of the radiative feedback from massive protostars.

"Time scaled by the free-fall time of the threshold density"

Number of first stars per minihalo

Susa (2019)

N_{frag} = 10 - 100 at the beginning of the radiative feedback from massive protostars.

Recipes of multiple stars:

- \bigcirc M_{total} = M_{star,single}
- 2 Log-normal mass spectrum (Susa et al. 2014) with $N_{frag} = 10 - 100$.

Stellar rotation

Influence on the stellar evolution and final state

Pristine star-forming cloud is a rapid rotator ($v_{rot}/v_{kep} \sim 0.5$)

If the tiny seed magnetic field (10⁻⁹ [G] in the host halo; Xu+'08) can be highly amplified during the cloud collapse, the magnetic braking effect transports angular momentum.

First stars formed in the MW-like galaxies

N-body data with resolving the host DM minihalo

Computed by Tomoaki ISHIYAMA (Chiba Univ., Japan)

*If you are interested to use our simulation data, please contact us (ishiyama@chiba-u.jp)

- All simulations are conducted by GreeM code (Ishiyama+'09; '12)
- DM halos/subhalos are identified by Rockstar halo finder (Behroozi+'13)
- Merger trees are constructed by consistent merger trees code (Behroozi+'13)

N	$L (h^{-1}\mathrm{Mpc})$	$\varepsilon (h^{-1} \mathrm{pc})$	$m_{\mathrm{p}}~(h^{-1}\mathrm{M}_{\odot})$	Zfin −
4096^{3}	16.0	60	5.13×10^3	<mark>- 0.0</mark>
20483	8.0	120	5.13×10^{3}	0.0
1536^{3}	3.0	30	6.41×10^2	7.5
768^{3}	3.0	60	5.13×10^3	7.5
512 ³	3.0	90	1.73×10^4	7.5

 Resolving the minimum halo mass (~10⁵ M_☉)

 \rightarrow 27 Milky Way size halos (M_{halo} ~ 10¹² [M_o] at z = 0)

Merger tree of MW-like galaxies

Semi-analytical modeling of the galaxy formation (modified of Ishiyama+'17)

Consistency check

Previous works, box size effect, and resolution effect

 SFRD in the case with the same models in the previous works:

This work |
$$L_{box}$$
=16 [cMpc/h] , M_{DM} =5130 [M $_{\odot}$ /h] Visbal+'18 | L_{box} =5 [cMpc] , M_{DM} = 4600 [M $_{\odot}$] Agarwal+'12 | L_{box} =3.8 [cMpc/h] , M_{DM} =6500 [M $_{\odot}$ /h]

- Box size dependence
- Resolution dependence

N	$L (h^{-1}\mathrm{Mpc})$	$\varepsilon (h^{-1}pc)$	$m_{\rm p}~(h^{-1}{\rm M}_{\odot})$	Zfin
4096 ³	16.0	60	5.13×10^{3}	0.0
2048^{3}	8.0	120	5.13×10^3	0.0
1536^{3}	3.0	30	6.41×10^2	7.5
768^{3}	3.0	60	5.13×10^3	7.5
512 ³	3.0	90	1.73×10^4	7.5

Host DM mihalos

We apply the semi-analytical model to two datasets

IMF of (single) first stars

We apply the semi-analytical model to two datasets

IMF of (multiple) first stars

Under Construction

We apply the semi-analytical model to two datasets

Future plans

To compare with observations of the MW

- IMFs at different regions
 - > In the center, outskirts, satellite
 - Numbers of surviving stars, massive BH (binary)
- MDF (Metallicity distribution function)
 - > internal- / external-enrichments (yesterday Chiaki's talk)
- IMF in the ancestral first galaxies
 - With different masses and formation epochs
- Effect of the local LW radiation (Pop III and II stars)
- We will reflect new simulation results on the star formation recipe.

Summary

Building-up Pop III IMF in the Milky Way-like galaxies

Purpose Constructing Pop III IMF in the Milk Way-like galaxies

Approach Merger tree based on the cosmological *N*-body simulation + first star formation recipe

Results Half of the sample becomes the HD-cooling mode. Their masses distribute around a lower-mass peak (\sim 15 M $_{\odot}$) of the bimodal distribution.

250 million years

Future IMF in different regions, MDF, first galaxies, ...