CEMP - Sept 2019 - Geneva

Chemical evolution, chemical enrichment and the ionizing escape fraction from GRBs

Nial Tanvir, University of Leicester

Topics

Several overlaps with interests of this meeting:

- Probes of ISM/IGM chemistry in/around distant galaxies.
- Probes of ionizing escape fraction from massive stars.
- Kilonovae (and collapsars) as sources of heavy r-process elements.

Typical GRB afterglow spectrum

$$\tau_{LL} = 6.3 \times 10^{-18} N_{\rm HI} \approx 10^5$$

Cosmic chemical evolution

Bright afterglows provide high-S/N spectra enabling detailed study of abundances in host and intervening absorbers.

e.g. GRB 130606A at z=5.91; VLT/ X-Shooter spectrum gives $Z \sim 0.05 Z_{\odot}$.

Hartoog +2015 (also Castro-Tirado +2013; Chornock +2013)

Cosmic chemical evolution

From hosts and afterglow spectroscopy, mostly low (at least ~sub~solar) metallicity.

Dust extinction and dust laws: SMC often a reasonable match, but 2175A features sometimes seen, as are more exotic laws.

First GRB hosts at $z \sim 6$

Majority of hosts at z > 5 undetected in deep HST observations.

McGuire et al. 2016 ApJ

Probes of reionization

Reionization occurred around z~7-9 (but timeline and topology poorly constrained)

HI column density from Ly-a absorption in afterglow spectra

Provides direct upper limit on escape fraction on each line of sight.

Rarely find low column sight-lines

$$\tau_{LL} = 6.3 \times 10^{-18} N_{\rm HI} \approx 2.5$$

HI column density evolution

High column densities seen in optical spectra of most 2 < z < 5 GRBs suggest escape fractions for *these stellar pops* of < 1.5 %.

Single burst stellar population synthesis, based on binary evolution BPASS-2 models (Stanway & Eldridge 2016) — most production is t < 10 Myr, consistent with typical GRB progenitor lifetimes (and SNIc).

What we are measuring and what we are not

What we are measuring and what we are not

Future developments

- In future, benefit from powerful new spectroscopic facilities e.g. SCORPIO on Gemini, JWST, ELT, TMT, GMT, ...
- Increased rate of discovery e.g. SVOM + Swift; THESEUS

What about the r-process elements?

Ejection of neutron star material during CBC mergers

Long regarded as potiential r-process source (e.g. Lattimer & Schramm 1974). Various components.

R-process nucleosynthesis from compact binary mergers

Recall Hansen talk this morning – likely some of these features explained by SrII (Watson et al. in press).

Third LIGO/Virgo science run

- Began April 2019; will run (with a break) to mid-2020.
- Several (\sim 5) events with high chance of containing a neutron star component, plus many (\sim 20) new BBH all more distant than GW170817.
- Consistent with z=0 rate of events "with ejecta" of \sim few x 100 /Gpc³/yr (only a small fraction of detected events are likely to be accompanied by prompt gamma-ray emission).
- Only one of these with a "small" error region (\$190814bv, error region ~25sq-deg, distance~250 Mpc), thought to be a NSBH system, but so far no good candidate KN.

Diversity: continued explorations of SGRB~KN

Lamb et al. 2019 (also Troja et al. 2019)

R-process nucleosynthesis from collapsars

Siegel, Barnes & Metzger 2019

Potentially substantial (dominant?) contribution to total budget, especially at early times in universe. (See also Fujimoto et al. 2007 for r-process in jets).

Conclusions

- GRB spectroscopy provides unique window on ISM/IGM in high redshift universe abundances, ionization state, dust, molecules etc.
- Problem to reconcile the observed low escape fraction of ionizing radiation (\sim 0.5%) from z<6 GRB *locations* with the requirement to reionize the intergalactic medium (\sim 10%). ie. seems to require rapid evolution in galaxy population to z \sim 8.
- New spectroscopic facilities will provide much better constraints in future, providing we keep/extend GRB localisation capability. Ideally would like samples of several tens of GRBs at z>6 to check for evolution in HI column distribution.
- Neutron star (and NS/BH) mergers now considered likely source of substantial heavy (and light) r-process enrichment. The budget, though remains challenging calculating yields, and rates over cosmic history.
- More NS GW events being found, but we were lucky with GW170817!
- Collapsars accretion disk outflows may also provide a substantial contribution to heavy r-process nucleosynthesis.