

CEMP*, Geneva Sept. 2019

European Research Council Established by the European Commission

Multi–Dimensional Modelling of Stellar Interiors

Raphael HIRSCHI Keele University, UK

SHEN @ Keele: L. Scott, E. Kaiser
in collaboration with:
GVA code: G. Meynet, A. Maeder, C. Georgy, S. Ekström, P. Eggenberger, A. Choplin and C. Chiappini (IAP, D)
VMS: N. Yusof, H. Kassim (UM, KL, Malaysia), P. Crowther (Sheffield), O. Schnurr (IAP)
Nucleo: F.-K. Thielemann, U. Frischknecht, T. Rauscher (Basel, CH/Herts, UK) N. Nishimura
NUGRID: F. Herwig (Victoria, Canada), M. Pignatari (Hull), C. Fryer, S. Jones (LANL),
J. den Hartogh (Konkoly Obs., H), Laird (York), UChicago, UFrankfurt, ...
MESA: B. Paxton (KITP), F. X. Timmes, (UArizona, US)
SNe: K. Nomoto (IPMU, J), C. Frohlich, M. Gilmer (NCSU), A. Kozyreva (Tel Aviv,II), T. Fischer (W.,P)
HYDRO: C. Meakin, D. Arnett (UArizona), C. Georgy (GVA), M. Viallet (MPA),
F. Roepke, L. Horst (HITS, D), S. Jones (LANL), P. Edelmann (Newcastle, UK), A. Cristini (Uoklahoma,US)

IPMU

DiRAC

- Importance, successes & challenges
- Multi-D models of rotation
- Multi-D models of convection
- Conclusions & Outlook

Stars' Role in Universe

First Stellar Generations: Importance

Stellar Evolution Models

Thus stellar evolution models are crucial to:

- predict the evolution, fate & impact of stars
- provide a theoretical framework of interpretations
 of observations

create a bridge between astronomical
 observations and nuclear physics (theory and exp.)

1D Stellar Evolution Models

Stellar structure equations + physical ingredients:

- Nuclear reactions
- Mass loss
- Convection
- Rotation
- Magnetic fields
- Binary interactions
- Equation of state, opacities & neutrino losses

including metallicity dependence

Structure Evolution of Massive Stars

Convection takes place during most burning stages

PISNe Models: from ZAMS to LCs (at Z=0.001)

(Kozyreva+RH+ 2017MNRAS.464.2854K, Gilmer+RH+ 2017ApJ.846.100, ArXiV170607454G)

Some (many?) PISNe and most PPISNe are faint!!

Successes: e.g. [Sr/Ba] in EMP stars

Strong variations in [Sr/Ba] > 1 matches well observed range for EMP stars (black circles)!

(no main s-process included so cannot explain CEMP-s stars in blue)

Cescutti *et al.* (2013), see also 2015

Model name	panels in Fig. 5	s-process	r-process		
ſ-	Upper	No s-process from massive stars	standard + extended r-process site (8 - 30 M_{\odot})		
as-	middle	average rotators $(v_{ini} / v_{critic} = 0.4)$	standard r-process site (8 - 10 M_{\odot})		
fs-	lower	fast rotators ($v_{int}/v_{critic} = 0.5$) and 1/10 for ¹⁷ $O(\alpha, \gamma)$ reaction rate	standard r-process site (8 - 10 M_{\odot})		

Advantages:
model entire evolution
(Δt ~ 10³ yrs)
compare to observations
progenitor models
large grids (M, Z)

Disadvantages:

- parametrized physics (e.g. convection)
- missing multi-D processes
- incapable of modelling turbulence

1D stellar models

What's missing?

self-consistent physical descriptions of mass loss, convection, rotation, magnetic fields, opacity, binarity and their interplay

Advantages:

model fluid instabilities
(e.g. Rayleigh-Taylor)
modeling 3D processes
model diffusive and advective processes

Disadvantages:

- computational cost
- limited to dynamical timescales ($t_{conv} \sim 1s - days$)
- resolution dependent?
- initial condition dependent?

3D stellar models

What's missing?

full star or lifetime simulations
Large scale (LES) and small scale (DNS)
cannot be followed simultaneously

Herwig, Woodward et al 2013

Way Forward: 1 to 3 to 1D link

Targetted 3D simulations

Herwig et al 06, Herwig, Woodward et al 2013

Uncertainties in 1D

e.g. Arnett & Meakin 2011, ... Mocak et al 2011, Viallet et al 2013, ...

Meakin et al 09 ; Bennett et al (thesis), Jones et al 16

→ Determine effective coefficient / improve theoretical prescriptions

2.3. Dynamical shear

The criterion for stability against dynamical shear instability is the <u>Richardson criterion</u>:

$$Ri = \frac{N^2}{(\partial U/\partial z)^2} > \frac{1}{4} = Ri_c,$$

where U is the horizontal velocity, z the vertical coordinate and N^2 the Brunt-Väisälä frequency:

$$N^{2} = \frac{g\delta}{H_{P}} [\nabla_{ad} - \nabla + \frac{\varphi}{\delta} \nabla_{\mu}]$$

2.3.1. The recipe

The following dynamical shear coefficient is used, as suggested by J.–P. Zahn (priv. comm.):

(1)

(2)

$$D = \frac{1}{3}vl = \frac{1}{3} \frac{v}{l} l^2 = \frac{1}{3} r \frac{\mathrm{d}\Omega}{\mathrm{d}r} \Delta r^2 = \frac{1}{3} r \Delta \Omega \Delta r$$
(5)

where r is the mean radius of the zone where the instability occurs, $\Delta\Omega$ is the variation of Ω over this zone and Δr is the extent of the zone. The zone is the reunion of

Hirschi et al 2004

Dynamical Shear

Edelmann et al 2016, A&A

2D simulations with SLH

Edelmann et al 2016, A&A

Dynamical Shear: Ri Time Evolution in 2D

- Threshold (Ri_c) confirmed.
- Mixing/transport rate is tricky to implement correctly in 1D codes

Convection: Current Implementation in 1D Codes

Multi-D processes:

Major contributor to turbulent mixing Turbulent entrainment at convective boundaries

Internal gravity waves

1D prescriptions:

- Energy transport in convective zone: mixing length theory (MLT) Bohm-Vitense (1957,58), or updates, e.g. FST: Canuto & Mazitelli (1991)

- Boundary location: Schwarzschild criterion OR Ledoux (+semiconvection)

- Convective boundary mixing (CBM, also composition dependent)

Convective Boundary Mixing (CBM)

Convective Boundary Mixing (CBM)

CBM — Entrainment...? Penetrative exp-D

Inspired by theory &multi-D hydro simulations

• More simulations and their interpretation in a theoretical framework will help improve these prescriptions

Viallet, Meakin, Prat, Arnett 2015, Arnett et al 2015

3D Hydro Efforts/Priority List

- * Convective boundary mixing during core hydrogen burning:
- +: many constraints (HRD, astero, ...)
- -: difficult to model due to important thermal/radiative effects
- -: long time-scale
- •* Silicon burning:
- +: important to determine impact on SNe of multi-D structure in progenitor (Couch et al 2015a,b, Mueller & Janka aph1409.4783, Mueller et al ArXiV1605.01393)
- +: possible shell mergers occurring after core Si-burning (e.g. Tur et al 2009ApJ702.1068; Sukhbold & Woosley 2014ApJ783.105) strongly affect core compactness
- +: radiative effects small/negl.
- -: ~ 10⁹ CPU hours needed for full silicon burning phase will be ok soon;
- -: might be affected by convective shell history
- •
- •* AGB thermal pulses/H-ingestion:
- +: already doable (e.g. Herwig et al 2014ApJ729.3, 2011ApJ727.89, Mocak et al 2010A&A520.114, Woodward et al 2015)
- +: thermal/radiative effects not dominant
- ?: applicable to other phases?
- •
- •* Oxygen shell: (Meakin & Arnett 2007ApJ667.448/665.448, Viallet et al 2013ApJ769.1, Jones et al ArXiV1605.03766)
- +: similar to silicon burning but smaller reaction network needed
- -: might be affected by convective shell history
- •* Carbon shell: (PhD A. Cristini)
- +: not affected by prior shell history
- +: first stage for which thermal effects become negligible
- •* Envelope of RSG (e.g. Viallet et al. 2013, Chiavassa et al 2009-2013),
- •* Solar-type stars (e.g. Magic et al. 2013A&A557.26, ...)

Where to Start?

Convection takes place during most burning stages

MNRAS **471**, 279–300 (2017) Advance Access publication 2017 June 20

doi:10.1093/mnras/stx1535

3D hydrodynamic simulations of carbon burning in massive stars

A. Cristini,¹★ C. Meakin,^{2,3} R. Hirschi,^{1,4}★ D. Arnett,³★ C. Georgy,^{1,5}
 M. Viallet⁶ and I. Walkington¹

MNRAS **484**, 4645–4664 (2019) Advance Access publication 2019 February 1 doi:10.1093/mnras/stz312

Dependence of convective boundary mixing on boundary properties and turbulence strength

A. Cristini[®],¹★ R. Hirschi,^{1,2}★ C. Meakin,^{3,4} D. Arnett,³ C. Georgy^{1,5} and I. Walkington¹

From 1D to 3D

C-shell in 15 M_{\odot} , Z=0.014 1D stellar evolution model

From 1D to 3D

C-shell in 15 M_{\odot} , Z=0.014 1D stellar evolution model

3D simulations of Carbon burning

3D C-shell Simulations

Snapshot from 1024³ resolution run: Gas Velocity ||v||

3D C-shell Simulations: v movie

Cristini+ 2017, MNRAS

Gas Velocity $\|\mathbf{v}\|$

http://www.astro.keele.ac.uk/shyne/321D/convection-and-convective-boundary-mixing/visualisations

3D C-shell Simulations

Snapshot from 1024³ resolution run: Gas Velocity ||v||

Resolution & Luminosity Study

					ALL DE LE CALLER DE		
	Luminosity						
Resolution		128	256	512	1024		
	1			eps1			
	33			eps33			
	100			eps100		0 1 11 1 00 17	
	333			eps333		Cristini+2017,	MNRAS
	1000	lrez	mrez	hrez/eps1k	vhrez	Resolution study	
	3333			eps3k			
	10000			eps10k			
	33333			eps33k			
				Luminosity study			

Cristini+2019, MNRAS

Boundary Entrainment

Top: $u_e \sim 20,000 \text{ cm/s}$; Bottom: $u_e \sim 3,000 \text{ cm/s}$. Rescaled for eps_{burn} boosting (1/1000) \rightarrow In 1 year, top: $\Delta R \sim 6x10^8$ cm, bottom: $\Delta R \sim 10^8$ cm: large but reasonable Consistent with oxygen-shell results and entrainment law.

Entrainment Law

Cristini et al 2019 (see also Garcia & Mellado, 2014, Deardor 1980, Chemel, Staquet and Chollet 2010, Fernando, 1991, Stevens and Lenschow, 2001, Jonker+ 2013)

Way Forward: 1 to 3 to 1D link

Targeted 3D simulations Uncertainties in 1D Cristini+2017 2.02.0 Radius (10⁹ cm) 1.8 M1.5 $1.4 M_{\odot}$ 1.51.00.5-50000-1000000 Age - $\tau_{\rm hydro}$ (hr) 0.51.5 0.50.0 A = 0.027 +/- 0.38 (intercept), n = 1.05 +/- 0.21 (gradient) 1e-02 $v_{\rm e}/v_{\rm rms}$ A = 0.05 +/- 0.06 (intercept), n = 0.74 + 0.04 (gradient) 1e-03 oxygen $v_e/v_{rms} = ARi_B^{-n}$ eps1k

ю

HO-

eps3k

100

1000

100000

50000

eps10k → Improve theoretical prescriptions

Entrainment in 1D model

7 b а core mass / M_o w b g g A=2.5e-5 n=1.5 A=5e-5 n=1.1 A=7.5e-5 n=1 n=0.9 A=7.5e-5 A=1e-4 n=1A=1.25e-4 n=0.85 2 2.5 5.0 10.0 12.5 2.5 7.5 10.0 12.5 7.5 0.0 5.0 0.0 age / Myr age / Myr A=2.5e-5 n=1.5 С d A=5e-5 n=1.1 A=7.5e-5 n=1 A=1e-4 n=0.9 A=1.25e-4 n=0.85 n=1 A=7.5e-5 4.2 4.50 4.45 4.35 4.50 4.45 4.35 4.40 4.40 log [effective temperature / K] log [effective temperature / K]

Scott+ in prep

Ne-burning & He-burning Underway

Variation relative to centre of CZ, t = 673.8 s (dump 450)

Georgy+ in prep ; Horst+ in prep

Conclusions & Outlook

- 1 3 1 D modelling of stellar interiors:
 - 2D simulations of dynamical shear
 - 3D C-shell simulations follow entrainment law
- Entrainment law being tested in 1D code
- & new CBM prescriptions under development!
- Exciting times ahead:
- - Great observational constraints
- - Complex physics explored in unprecedented details
- - CPU-GPU supercomputers