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Stars' Role in Universe
© NASA - WMAP science team 

BIG
BANG

NOW

- Re-ionisation
- Kinetic feedback
- Chemical feedback observed in EMP stars

NOW



First Stellar Generations: Importance
© NASA - WMAP science team 

BIG
BANG

NOW

- Observable? 
- GRB090423 @ z=8.3 
Universe age ~ 600 Myr  (Tanvir et al 09, Nature: arXiv:0906.1577)

NOW



Stellar Evolution Models

Thus stellar evolution models are crucial to:

- predict the evolution, fate & impact of stars

- provide a theoretical framework of interpretations 

of observations

- create a bridge between astronomical 

observations and nuclear physics (theory and exp.)



1D Stellar Evolution Models
Stellar structure equations + physical ingredients:

 - Nuclear reactions

 - Mass loss

 - Convection

 - Rotation

 - Magnetic fields

 - Binary interactions

 - Equation of state, opacities & neutrino losses

 including metallicity dependence



Structure Evolution of Massive Stars

Convection takes place during most burning stages
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PISNe Models: from ZAMS to LCs (at Z=0.001)
 (Kozyreva+RH+ 2017MNRAS.464.2854K, Gilmer+RH+ 2017ApJ.846.100, ArXiV170607454G)

Some (many?) PISNe and most PPISNe are faint!!



Successes: e.g. [Sr/Ba] in EMP stars

Cescutti et al. (2013),
see also 2015

Strong variations in [Sr/Ba] > 1 
matches well observed range 
for EMP stars (black circles)!

(no main s-process included so 
cannot explain CEMP-s stars in 
blue)



1D stellar models

Advantages:
- model entire evolution 
(Δt ~ 103 yrs)
- compare to observations
- progenitor models
- large grids (M, Z)

Disadvantages:
- parametrized physics (e.g. 
convection)
- missing multi-D processes 
- incapable of modelling turbulence

What's missing?
- self-consistent physical descriptions of mass 
loss, convection, rotation, magnetic fields, 
opacity, binarity and their interplay



3D stellar models

Advantages:
- model fluid instabilities 
(e.g. Rayleigh-Taylor)
- modeling 3D processes 
- model diffusive and 
advective processes

Disadvantages:
- computational cost
- limited to dynamical 
timescales (t

conv
~ 1s – days)

- resolution dependent?
- initial condition 
dependent?

What's missing?
- full star or lifetime simulations
- Large scale (LES) and small scale (DNS) 
cannot be followed simultaneously

Herwig, Woodward et al 2013 



Way Forward: 1 to 3 to 1D link

Herwig et al 06, Herwig, Woodward et al 2013 

→ Determine effective coefficient / improve theoretical prescriptions
Meakin et al 09 ; Bennett et al (thesis), Jones et al 16

Targetted 3D simulations Uncertainties in 1D

e.g. Arnett & Meakin 2011, ...
Mocak et al 2011, 
Viallet et al 2013, ...



Hirschi et al 2004

H



Dynamical Shear

Edelmann et al 2016, A&A

20 M
⊙
, Z=0.014



2D simulations with SLH

Edelmann et al 2016, A&A



Dynamical Shear: Ri Time Evolution in 2D

Edelmann et al 2016, A&A

20 M
⊙
, Z=0.014

● Threshold (Ri
c
) confirmed. 

● Mixing/transport rate is tricky to implement correctly in 1D codes 



Major 
contributor to 
turbulent mixing

Turbulent 
entrainment at 
convective 
boundaries

Internal gravity 
waves

Multi-D 
processes:

1D prescriptions:

- Energy transport in convective zone: mixing length theory (MLT) 
Bohm-Vitense (1957,58), or updates, e.g. FST: Canuto & Mazitelli 
(1991)

- Boundary location: Schwarzschild criterion OR Ledoux (+semi-
convection) 

- Convective boundary mixing (CBM, also composition dependent)

Convection: Current Implementation in 1D Codes



CBM

Penetrative exp-D
Extend 
convective 
region

Same degree 
of mixing

Mixing 
decreasing
exponentially

Extended by 
fraction of 
pressure scale 
height

Mixing 
continued 
until cutoff 
reached

d ov=αov min[ H P , r c] D=D0 exp [ −2 z
f CBM H P ]

Zahn 1991
Freytag+ 96, Herwig 2000

Entrainment...?

Convective Boundary Mixing (CBM)



CBM

Penetrative exp-D

Entrainment...?

Convective Boundary Mixing (CBM)

● Inspired by theory &multi-D hydro simulations

● More simulations and their interpretation in a 
theoretical framework will help improve these 
prescriptions

Viallet, Meakin, Prat, Arnett 2015, Arnett et al 2015



3D Hydro Efforts/Priority List
* Convective boundary mixing during core hydrogen burning:
● +: many constraints (HRD, astero, ...)
● -: difficult to model due to important thermal/radiative effects
● -: long time-scale
●

●*  Silicon burning:
● +: important to determine impact on SNe of multi-D structure in progenitor (Couch et al 2015a,b, Mueller & Janka 
aph1409.4783, Mueller et al ArXiV1605.01393)
● +: possible shell mergers occurring after core Si-burning (e.g. Tur et al 2009ApJ702.1068; Sukhbold & Woosley 
2014ApJ783.105) strongly affect core compactness
● +: radiative effects small/negl.
● -: ~ 109 CPU hours needed for full silicon burning phase will be ok soon; 
● -: might be affected by convective shell history
●

●* AGB thermal pulses/H-ingestion:
● +: already doable (e.g. Herwig et al 2014ApJ729.3, 2011ApJ727.89, Mocak et al 2010A&A520.114, Woodward et al 
2015)
● +: thermal/radiative effects not dominant
● ?: applicable to other phases?
●

●* Oxygen shell: (Meakin & Arnett 2007ApJ667.448/665.448, Viallet et al 2013ApJ769.1, Jones et al 
ArXiV1605.03766)
● +: similar to silicon burning but smaller reaction network needed
● -: might be affected by convective shell history
●

●* Carbon shell:  (PhD A. Cristini)
● +: not affected by prior shell history
● +: first stage for which thermal effects become negligible 
●

●* Envelope of  RSG (e.g. Viallet et al. 2013, Chiavassa et al 2009-2013),
●* Solar-type  stars  (e.g. Magic et al. 2013A&A557.26, ...)
●



Where to Start?

Convection takes place during most burning stages
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Cristini+ 2017, MNRAS
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From 1D to 3D
C-shell in 15 M

⊙
, Z=0.014 1D stellar evolution model

H-burning

Cristini+ 2017, MNRAS



From 1D to 3D
C-shell in 15 M

⊙
, Z=0.014 1D stellar evolution model

H-burning

C

Cristini+ 2017, MNRAS



3D simulations of Carbon burning



3D C-shell Simulations
Snapshot from 10243 resolution run:

Cristini+ 2017, MNRAS

1D boundaries



3D C-shell Simulations: |v| movie

http://www.astro.keele.ac.uk/shyne/321D/convection-and-convective-boundary-mixing/visualisations 

Cristini+ 2017, MNRAS

http://www.astro.keele.ac.uk/shyne/321D/convection-and-convective-boundary-mixing/visualisations


3D C-shell Simulations
Snapshot from 10243 resolution run:

KH inst.
(shear)

Internal Gravity waves1D boundary

Cristini+ 2017, MNRAS



Resolution & Luminosity Study

Cristini+2017, MNRAS

Cristini+2019, MNRAS



Boundary Entrainment

Top: u
e
 ~ 20,000 cm/s; Bottom: u

e
 ~ 3,000 cm/s. Rescaled for eps

burn
 boosting (1/1000) 

→ In 1 year, top: R ~ 6x108 cm, bottom: R ~ 108 cm: large but reasonable 

Consistent with oxygen-shell results and entrainment law. 

Cristini+2017, MNRAS



Entrainment Law
Cristini et al 2019 (see also Garcia & Mellado, 2014, Deardor 1980, Chemel, Staquet and 
Chollet 2010,  Fernando, 1991, Stevens and Lenschow, 2001, Jonker+ 2013)

RiB=
Δ B×l

vrms
2

RiB=
stabilising potential

turbulent kinetic energy



Way Forward: 1 to 3 to 1D link
Targeted 3D simulations Uncertainties in 1D

Cristini+2017

→ Improve theoretical prescriptions



Entrainment in 1D model
Scott+ in prep



Ne-burning & He-burning Underway
Georgy+ in prep ; Horst+ in prep



Conclusions & Outlook
 - 1 - 3 - 1 D modelling of stellar interiors:

 - 2D simulations of dynamical shear

 - 3D C-shell simulations follow entrainment law

 - Entrainment law being tested in 1D code

 & new CBM prescriptions under development!

 - Exciting times ahead: 

 - - Great observational constraints

 - - Complex physics explored in unprecedented details  

 - - CPU-GPU supercomputers
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