CEMP star formation from faint supernova explosions

Gen Chiaki

John H. Wise

(Georgia Tech)

CEMP Stars as Probes of First-Star Nucleosynthesis, the IMF, and Galactic Assembly September 12, 2019 @ Geneve

Origin of CEMP and EMP stars

Origin of Group I stars

Extrinsic

• Binary transfer (Suda et al. 2004)

Origin of Group II/III stars

Intrinsic

• Enrichment from supernovae (SNe) (Heger & Woosley 2002; Umeda & Nomoto 2002)

• Spinstar (Maynet et al. 2006)

• Binary transfer (Suda et al. 2004)

SNe: the factory of dust grains

Todini & Ferrara (2001); Matsumoto et al. (2011)

© NASA and Larry Nittler

Role of grains in star formation

Omukai (2000); Schneider et al. (2003)

Origin of CEMP and EMP stars

Two major grain species

Todini & Ferrara (2001); Matsumoto et al. (2011)

Carbonaceous grains

✓ Composition: C

Lodders & Amari (2005)

Silicate grains

✓ Composition: O, Si, Mg, ...

Moyce et al. (2015)

Group II and III star formation through carbon/silicate grains

Chiaki, Tominaga & Nozawa (2017, MNRAS, 472, L115)

Group II and III CEMP stars

Normal Type II SNe

Numerical method

AMR/N-body Code

ENZO (Bryan et al. 2014) **Chemistry/cooling** GRACKLE (Smith et al. 2017) **Box size** 300 ckpc (periodic) **Top grid** 64³ **Resolution** Jeans length / 64

Box size (300 comoving kpc)

Normal Type II SNe

Nozawa et al. (2007)

<i>M</i> _{pr}	E _{SN}	<i>M</i> (met)	<i>M</i> (C)	<i>M</i> (Fe)	<i>M</i> (dust)	<i>M</i> (silicate)
[M _☉]	[10 ⁵¹ erg]	[M _☉]	[M _☉]	[M _☉]	[M _☉]	[M _☉]
13	1	0.746	0.197	6.98x10 ⁻²	6.90x10 ⁻²	6.48x10 ⁻⁴

Self-enrichment of the cloud

Density (cm^{-3})

Origin of C-normal stars: Enrichment of normal Type II SNe

Filamentary structures induced by dust cooling

Faint SNe

Metal/dust mass is too low because of the fall-back??? [>]

Progenitor models Marassi et al. (2014)

<i>M</i> _{pr} [M _☉]	E _{SN} [10 ⁵¹ erg]	<i>M</i> (met) [M _☉]	<i>M</i> (C) [M _☉]	<i>M</i> (O) [M _☉]	<i>M</i> (dust) [M _☉]	<i>M</i> (C,dust) [M _☉]
13	0.5	9.71x10 ⁻²	6.50x10 ⁻²	3.21x10 ⁻²	1.70x10 ⁻²	1.70x10 ⁻²
50	2.6	3.54	0.988	2.55	3.89x10 ⁻⁴	3.89x10 ⁻⁴
80	5.2	4.31	1.09	3.21	3.74x10 ⁻²	3.74x10 ⁻²

Elemental abundance

Size distribution of carbon grains

Metallicity distribution in recollapsing clouds

Poor dust cooling The cloud collapses stably.

Role of grains in star formation

Omukai (2000); Schneider et al. (2003)

Conclusion

- What is the origin of CEMP stars?
- Can enrichment from a single faint SN explain this?
 ►NO
- Metallicity in the self-enriched halo is too small.
 - A(C) = 3.80-5.06 for $M_{\rm pr}$ = 13-80 M $_{\odot}$
 - ➢Clouds collapse stably against fragmentation.
 - Massive stars which can not survive will form.
- Enrichment more than twice is required.
 - multi-enrichment (Tilman's talk)
- Or other mechanisms
 - binary transfer (Suda et al. 2004)
 - spinstar (Meynet et al. 2006; Arthur's talk)
 - jet-like SNe (Tominaga et al. 2009; Rana's talk)

Method: modified GRACKLE + ENZO Radiative cooling

CII, CI, and OI fine-structure cooling

calculate level populations

opacity for each transition line (Sobolev approx.) integrate cooling rates

H₂ ro-vibration transition line cooling

3 vibrational levels20 rotational levels

HD rotation transition line cooling

3 vibrational levels

CO, OH, and H₂O rotation transition line

interpolated from tables presented by CO (Omukai et al. 2010) OH (Neufeld & Kaufman 1993) H_2O (Neufeld et al. 1995) from N_{mol} , T, and n_{H2} of each cell

Method: modified GRACKLE + ENZO Huge reaction networks

48 primordial chemistry

$H + e^- \rightarrow H^+ + 2 e^-$	$HD + H \rightarrow H_2 + D$
$\mathrm{H^{+}}$ + $\mathrm{e^{-}}$ \rightarrow H + γ	$\mathrm{HD} + \mathrm{H}^+ \to \mathrm{H}_2 + \mathrm{D}^+$
$\text{He} + \text{e}^- \rightarrow \text{He}^+ + 2 \text{ e}^-$	${ m D} + { m H}^+ ightarrow { m H}{ m D}^+ + \gamma$
$\mathrm{He^{+}} + \mathrm{e^{-}} \rightarrow \mathrm{He} + \gamma$	$\mathrm{D^{+}}$ + $\mathrm{H} \rightarrow \mathrm{HD^{+}}$ + γ
$He^+ + e^- \rightarrow He^{++} + 2e^-$	$HD^+ + e^- \rightarrow H + D$
$\text{He}^{++} + \text{e}^- \rightarrow \text{He}^+ + \gamma$	${\rm D} + {\rm e}^- ightarrow {\rm D}^- + \gamma$
$H + e^- \rightarrow H^- + \gamma$	$D^+ + D^- \rightarrow 2D$
$H + H^- \rightarrow H_2 + e^-$	$\mathrm{H^{+}} + \mathrm{D^{-}} \rightarrow \mathrm{D} + \mathrm{H}$
$H + H^+ \rightarrow H^+ + \gamma$	$H^- + D \rightarrow H + D^-$
\mathbf{u}^+ , \mathbf{u} , \mathbf{u} , \mathbf{u} , \mathbf{u}	$\mathrm{D^-} + \mathrm{H} \rightarrow \mathrm{D} + \mathrm{H^-}$
$H_2^+ + H \rightarrow H_2^+ + H^+$	$D^- + H \rightarrow HD + e^-$
$H_2 + H^+ \rightarrow H_2^+ + H$	$H + H + H \rightarrow H_2 + H$
$H_2 + e^- \rightarrow 2H + e^-$	$H + H + H_2 \rightarrow H_2 + H_2$
$H_2 + H \rightarrow 3H$	$H_2 + H_2 \rightarrow H + H + H_2$
$\mathrm{H^-} + \mathrm{e^-} \rightarrow \mathrm{H} + 2\mathrm{e^-}$	$\rm H + \rm H \rightarrow \rm H^+ + e^- + \rm H$
$H^- + H \rightarrow 2H + e^-$	$\text{He} + \text{H}^+ \rightarrow \text{He}^+ + \text{H}$
$\rm H^- + H^+ \rightarrow 2H$	${ m He^+}$ + H \rightarrow He + H ⁺
$\mathrm{H^-} + \mathrm{H^+} \rightarrow \mathrm{H_2^+} + \mathrm{e^-}$	${\rm He} + {\rm H}^+ \rightarrow {\rm He} {\rm H}^+ + \gamma$
$H_2^+ + e^- \rightarrow 2H$	${\rm He} + {\rm H}^+ \rightarrow {\rm He} {\rm H}^+ + \gamma$
$H_2^+ + H^- \rightarrow H + H_2$	$\mathrm{He} + \mathrm{H}_2^+ \rightarrow \mathrm{He}\mathrm{H}^+ + \mathrm{H}$
$\tilde{D^+} + e^- \rightarrow D + \gamma$	${\rm He^+}$ + ${\rm H} \rightarrow {\rm HeH^+}$ + γ
$D + H^+ \rightarrow D^+ + H$	$\text{HeH}^+ + \text{H} \rightarrow \text{He} + \text{H}_2^+$
$D^+ + H \rightarrow D + H^+$	$HeH^+ + e^- \rightarrow He + H$
$\rm D + \rm H \rightarrow \rm H\rm D + \gamma$	
$\mathrm{D} + \mathrm{H}_2 \rightarrow \mathrm{H} + \mathrm{H}\mathrm{D}$	
$HD^+ + H \rightarrow H^+ + HD$	
$\mathrm{D^{+}} + \mathrm{H_{2}} \rightarrow \mathrm{H^{+}} + \mathrm{HD}$	

H_2 formation on grain

 $2H + grain \rightarrow H_2$

38 metal chemistry

$H + CH \rightarrow C + H_2$	$H^+ + O_2 \rightarrow O_2^+ + H$
$\rm H + \rm CH_2 \rightarrow \rm CH + \rm H_2$	$C^+ + OH \rightarrow CO^+ + H$
$\rm H + OH \rightarrow H_2 + O$	$C^+ + O_2 \rightarrow O^+ + CO$
$\rm H + H_2O \rightarrow OH + H_2$	$O^+ + H \rightarrow H^+ + O$
$\rm H + O_2 \rightarrow \rm OH + O$	$O^+ + H_2 \rightarrow OH^+ + H$
$\rm C + \rm H_2 \rightarrow \rm C\rm H + \rm H$	$OH^+ + H_2 \rightarrow H_2O^+ + H_2$
$O + H_2 \rightarrow OH + H$	$H_2O^+ + \tilde{H}_2 \rightarrow \tilde{H}_3O^+ + H$
$\rm H^+ + O \rightarrow O^+ + H$	$\rm CO^+ + H \rightarrow H^+ + CO$
$H_2 + CH \rightarrow CH_2 + H$	$C^+ + e \rightarrow C + \gamma$
$H_2 + OH \rightarrow H_2O + H$	$OH^+ + e \rightarrow O + H$
$\rm 2OH \rightarrow H_2O + O$	$H_2O^+ + e \rightarrow OH + H$
$OH + CO \rightarrow CO_2 + H$	$H_2O^+ + e \rightarrow O + H_2$
$\rm C + H \rightarrow CH + \gamma$	$H_3O^+ + e \rightarrow H_2O + H$
$\rm C+OH \rightarrow \rm CO+H$	$H_3O^+ + e \rightarrow OH^+ 2H$
$\rm C+O_2 \rightarrow \rm CO+O$	$O_2^+ + e \rightarrow 2O$
$\rm O + H \rightarrow OH + \gamma$	$H_2^2 + C \rightarrow CH_2 + \gamma$
$2O \rightarrow O_2 + \gamma$	$Si + OH \rightarrow SiO + H$
$\rm O+CH \rightarrow CO+H$	$Si + O_2 \rightarrow SiO + O$
$O + OH \rightarrow O_2 + H$	$SiO + OH \rightarrow SiO_2 + H$
$\rm H^+ + OH \rightarrow OH^+ + H$. 2,
$\rm H^+ + H_2O \rightarrow H_2O^+ + H$	

10 grain growth reactions

 $\begin{array}{l} Si(g) \rightarrow Si(s) \\ Fe(g) \rightarrow Fe(s) \\ 2Mg(g) + SiO(g) + 3H_2O(g) \rightarrow Mg_2SiO_4(s) + 3H_2(g) \\ 2Mg(g) + SiO(g) + 3H_2O(g) \rightarrow Mg_2SiO_4(s) + 3H_2(g) \\ Mg(g) + SiO(g) + 2H_2O(g) \rightarrow MgSiO_3(s) + 2H_2(g) \\ 3Fe(g) + 4H_2O(g) \rightarrow Fe_3O_4(s) + 4H_2(g) \\ C(g) \rightarrow C(s) \\ SiO_2(g) \rightarrow SiO_2(s) \\ Mg(g) + H_2O(g) \rightarrow MgO(s) + H_2(g) \\ Fe(g) + S(g) \rightarrow FeS(s) \\ 2Al(g) + 3H_2O(g) \rightarrow Al_2O_3(s) + 3H_2(g) \end{array}$

Formation of H II region

Collapse of enriched cloud with $M_{\rm pr}$ = 80 M $_{\odot}$

