OLDEST STARS IN THE GALACTIC BULGE

Beatriz Barbuy

IAG - Universidade de São Paulo

OUTLINE

- Bulge Formation
- Age of bulge globular clusters
- Orbits: bulge vs. halo/thick disk intruders
- Metallicity distribution function
- Metal-poor stars in the Galactic bulge
- CEMP stars
- Fast star formation rate
- Abundances in field and GC stars

Kormendy & Kennicutt ARA&A 2004:

BULGES OF SPIRALS:

Sa, Sb = high mass = bulges

Sc = pseudobulges formed from the bar

Milky Way

Barred:
SABbc(rs) → SABb(rs)

Classical bulge or Pseudobulge formed entirely from the bar?

Bland-Hawthorn & Gerhard 2016, ARA&A

Formation of bulges

Redshift z~2 → 10 Gyr → bulges in formation

Evidence show bulges already formed, with no star formation in the center, only in the surrounding disk (Tacchella+15, Nelson+16)

Disks had much more gas than now, of the order of 50% →

Tacconi+18: quantity of gas scales with redshift: (1+z) 2.6

galaxies are more compact, effective radius scaling with (1+z)⁻¹ (Newman+12)

- Therefore surface gas density scales with: $(1+z)^{4.6}$
- → Probably the property of galaxies that evolve most rapidly (Renzini+18).

Scenarios of bulge formation

- 1.Classical = central collapse $t_{free-fall} \sim (G\rho)^{-1/2}$
 - → bulge forms first, in ~10⁸ yr
- → this was a super-simplification → but several recent models with bulge forming first

 Evolution of the bar → transfer of gas and stars to the center of the Galaxy, leading to bulge formation

Several models in the lines of option 1:

Bulges form first

→ old bulge (13 Gyr)

Clumps migrate and coalesce in the centers of protogalaxies (Bournaud)

Turbulent instabilities of disks, leading to intense star formation (Dekel & Burkert14, Tacchella+16).

Bournaud et al. 2009

Clouds of gas coalesce

Bournaud, Elmegreen, Martig 2009, ApJ 707, L1 NGC 891 – analog to Via Lactea

Cosmological simulations in ACDM:

Formation of small disks of dark matter:

- → these disks coalesce
- gas falls in these potential wells due to gravity
- → bulges form first

Abadi

Schematic of Bar Formation and Evolution

CMC =
Central
Mass
Concentration

The formation of the bar and buckling in the MW are confirmed, given its box/peanut shape.

But this has probably occurred more recently, when there was already little gas → in this case bulge was already formed (Renzini+18)

Age of MW bar:

Buck+2018: models
Bovy+2019:Gaia+APOGEE

→ 8 Gyr

Oldest stars: 13 Gyr

OLD BULGE: OLDEST STARS

Miralda-Escudé 2000

Tumlinson 2010, ApJ 708, 1398: Oldest most metal-poor stars in the very center of the Galaxy, in the bulge (not of the bulge)

Carollo+2016

→ Oldest in the center

1 | Chronographic map for photometrically-selected BHB stars from the SDSS. The adopted

Globular Clusters in the Galactic bulge

Bica, Ortolani, Barbuy 2016, PASA, 33, 16

43 genuine bulge globular clusters (RGC<3.5 kpc, I,b< 20°)

plus:

40 including halo intruders, outer bulge shell, "disk" clusters (metal-rich, R>4.5kpc)

Barbuy Chiappini Gerhard 2018

ARA&A

Yellow dots: [Fe/H]~-1.0

squares:

newly identified GCs or candidates

Bica+16 MDF

AGES: HP1: 13 GYR (Kerber+19)

Oliveira, Souza+2019

REDSHIFT
 AGE

$$z = 2$$
 10.6 Gyr

 $z = 4$
 12.4 Gyr

 $z = 7$
 13.2 Gyr

 Reionization:

 $z = 8.8$ (Planck)
 13.4 Gyr

 $z = 10$
 13.5 Gyr

Could even have formed before reionization

RECENT ORBIT ANALYSIS:

Terzan 10, Djorgovski 1

→ New radial velocities, and proper motions -> Halo intruders (Ortolani+2018)

Pérez-Villegas+19

Orbit-driven selection

green circles = Bulge GCs

METALLICITY DISTRIBUTION FUNCTION OF BULGE FIELD STARS

ARA&A 2018

Barbuy, Chiappini Gerhard

Percentages of metal-poor stars in the bulge:

Rojas-Arriagada et al. 2014	1.1%
Rojas-Arriagada et al. 2017	0.2%
Ness et al. 2013	0.7%
Zoccali et al. 2017	.0.2%

Note: use of Red Clump Stars prevents finding very metal-poor stars

In any case: very low number of stars with [Fe/H]<-1.0 García-Pérez+2013: APOGEE: **5** stars with **-2.1<[Fe/H]<-1.6**

Howes+2016: EMBLA: 300 candidates with [Fe/H]<-2.0 → 24 stars: -3.94 < [Fe/H] < -1.83

Lamb+2017: EMBLA: [Fe/H]=-1.51, -2.06

Schlaufman+Casey2014,2015: **3** stars with **-3.1 < [Fe/H] < -2.7**

Koch+2016: 1 CEMP-s [Fe/H] = -2.52, 1 [Fe/H] = -1.53 CH, 4 -2.66<[Fe/H] < -2.07

Duong et al. 2019 – HERBS survey

Duong+2019: 47 stars with [Fe/H]<-0.8 **7 stars with [Fe/H]<-1.5 1 star with [Fe/H]=-2.0**

Lucey+2019: 26 - 16 stars with [Fe/H]<-0.8
9 stars with [Fe/H]<-1.0
6 stars with [Fe/H]<-1.5
2 stars with [Fe/H]<-2.0
with [Fe/H]=-2.3, -2.31
Koch+2019: 2 C-rich, peutron-capture-rich

Koch+2019: 2 C-rich, neutron-capture-rich with [Fe/H]=-1.5, -2.5

"bulge" metalpoor stars

Outer bulge

Pristine + Gaia (meeting Pucón 2018)

Reason why there are so few metal-poor stars in the Galactic bulge:

Fast chemical enrichment – e.g. SFR 20 times that of solar neighbourhood (Matteucci et al. 2012)

Cescutti, Chiappini, Hirschi, Barbuy, Meynet 2019, in prep.: Metal-poor halo vs. metal-poor bulge: [Fe/H]=-2.5 vs. -1.0

ABUNDANCES

Why oxygen abundances are important → high oxygen-to-iron → fast enrichment by the first supernovae – Fe comes later from SNIa

Fig. 4.—A sketch of the predicted [O/Fe] vs. [Fe/H] relations in different systems as a consequence of their different [Fe/H]-t relations.

Barbuy Chiappini Gerhard 2018 ARA&A

Bulge vs. Thick disk – different or the same? APOGEE: Schultheis+2018

Friaça Barbuy 2017

Differences Bulge vs. Thick Disk

Table 3 Level of abundance ratio plateau, and knee when it starts to drop, for comparable populations of Bulge (B) and thick-disk (TD) stars

Reference	Stars B/TD	[O, Mg/Fe] Plateau	[Fe/H] Knee	Reference	Stars B/TD	[Mg/Fe] Plateau	[Fe/H] Knee
Friaça & Barbuy (2017)	В	+0.30	-0.55 ± 0.03	Hill et al. (2011)	В	+0.36	-0.4 to -0.5
Bensby et al. (2013, 2017)	В	+0.41	−0.45 to −0.05	Bensby et al. (2017)	TD	+0.36	-0.6
Rojas-Arriagada et al. (2017)	В	$+0.310 \pm 0.11$	-0.37	Rojas-Arriagada et al. (2017)	TD	$+0.304 \pm 0.07$	-0.43

Barbuy, Chiappini, Gerhard 2018

Duong+2019: alphaenhancement for [Fe/H]<-1.0

Duong +2019

Duong +2019

Duong+2019: metal-poor bulge populations do not share the same similarity with the disk, as the metal-rich populations

Ernandes+18; [Mn/O] distinguishes thin-thick disk field bulge + GCs slightly more [Mn/O]-poor

Ernandes+18: GCs more Cu-poor

Cescutti+19

Includes magneto-rotationally driven SN

-connexion w/ spinstars in pre-SN phase

Abundances in Globular clusters: we have been looking for:

Bulge GCs characterized by:

- [Fe/H] ~ -1.0
- BHB (and/or + RHB)
- Old age (~13Gyr)

A typical abundance pattern?

Queiroz, Chiappini, Perez-Villegas+2019

APOGEE: distance selected 2330 bona-fide bulge stars

Metal-poor, High-alpha

Dominated by

Low Rmin (in prep.)

Conclusions

- 1. Very few metal-poor stars are found.
- 2. MDF -1.3 < [Fe/H] < +0.5
- 3. Predominantly old fraction of young < 3.5 % → controversies
- 4. [alpha/Fe],[Al/Fe],[Eu/Fe]=+0.3 to 0.5 dex
 - > enrichment by SN II
- 5. Evidence for Fast Chemical Enrichment
 - → OLD, but Moderately Metal-poor
 - Magneto-rotationally driven Snae + spinstars in the pre-SN phase
- 6. Very few CEMP stars (Koch+19)

The End