

Aim of the talk:

Observational facts in CEMP-no abundances

The role of massive rotating stars (spinstars)

SN contributions seem absent WIND EJECTA ? (OB and/or late wind ejecta ?)

NUCLEOSYNTHETIC SEQUENCE

Class 1: products of He-burning:

 $\frac{\text{WC-stars}}{C, O, (^{20}\text{Ne})}$ $^{12}\text{C}/^{13}\text{C} \rightarrow \text{infinite}$

<u>Class 2:</u> mixing of C,O + H - processing :

<u>Class</u> 3: further mixing in He- burning zone (α-captures on ¹⁴N):

<u>**Class 4:**</u> further mixing in H-burning zone: Ne - Na cycle Mg - Al cycle C,O→N (²⁰Ne→²³Na) (¹²C → ¹³C)

¹⁴N \rightarrow ²²Ne(α,γ)²⁶Mg ²²Ne(α,n)²⁵Mg n \rightarrow s-elements (1st peak)

C, O → N goes on 20,22 Ne → 23 Na 25,26 Mg → 27 Al, (28 Si) s-elements still there ~30 % [Fe/H]=-3.38

~40 % [Fe/H]=-3.82

~30% [Fe/H]=-4.11

Where does the matter of CEMP-no stars come from?

Fraction of matter from Herich zone mixed H-burning Choplin et al. 2016

The matter forming CEMP-no stars comes mostly from the H- rich regions of the source stars !

Signatures of H – burning:N from CNO cycle (in various abund.)13C presentNe – Na and Mg – Al cycle (high T)

Do Na, Al, Mg behave like α -elements or like CNO ?

Slope ~1 → Na/N keeps ~constant over about 4 dex "daughter-mother"

Consistent with the Ne-Na cycle in CEMP-no stars !

Slope 1 → Al/Mg about constant, Rel. mother-daughter: signatures of Mg-Al cycles!

Ne, Na, Mg and Al behave like CNO. Signatures of hot H-burning

No relation with SN nucleosynthesis. Wind ejection, late ejection What about the anticorrelation in Globular Clusters ?

Relation between CNO and α -elements

Range of [Ca/Fe] : small, range of [C/Fe] about 4 dex. <u>CNO, Na, Mg, Al in CEMP-no stars</u> <u>behave very differently from α– elements.</u>

The same although the O layer lies less deep in pre-SN.

<u>No relation between α - and CNO elements:</u> (α - elements necessarily produced in pre-SN)

Consistent with C, N, O from winds of massive stars, while minute amounts of α -elements from SN ejecta.

SUPERNOVA MODELS

MIXING AND FALLBACK MODELS

→ Layers between 2 limiting shells are fully mixed
→ All layers below some cutoff mass collapse into the remnant Differently for each star observed

Supernova yields from models without and with rotation Takahashi et al. 2014

Difficulty for N

WIND + SN ASYMMETRIC EXPLOSION

<u>WIND >> SN:</u> CEMP-no Rich in C, N, O, ²²Ne, Mg, Al

<u>WIND << SN</u>: C-normal metal-poor

Spinstar model (Meynet et al. 2010)

Anisotropic SN explosion

SPINSTARS

Massive stars rotate faster at lower Z, near break-up → mixing + mass loss (Maeder et al. 1999; Martayan et al. 2007; Stacy et al. 2011)

More mixing at low Z Shears, merid. circulation) → primary N, ²²Ne, (Maeder & Meynet 2002

MASS LOSS IN RSG, PRE- SN EJECTION

High M in RSG: C-rich, dust

(Ekström et al. 2008; Meynet et al. 2010)

<u>Pre- SN ejection:</u> ~ M_o ejected a few 10² d. before explosion (Moriya & Langer 2014; Choplin et al. 2018; Arcavi et al. 2018; Taddia et al. 2018; Kuncarayakti et al. 2018; Bostroem et al. 2019)

SUPPORTING EVIDENCES OF SPINSTARS ARE NUMEROUS

Comparisons with Geneva models Chiappini et al. 2008, 2016

Israelian et al. 2004 Spite et al. 2005

- 1. N/O at low Z
- 2. C/O
- 3. ¹²C/¹³C
- 4. Primary Be and B
- 5. s-elements

Formation of s-elements of the 1st peak

 α -captures on ²²Ne:

²²Ne(
$$\alpha$$
,n)²⁵Mg

Large scatter of s-elements only explained if contribution from spinstars (Cescutti et al. 2013)

 \leftarrow

Standard r-process from SN explosions AGB make CEMP-s with low Sr/Ba !

With contribution of s-elements from massive rotating stars.

SPINSTARS OK for CEMP-no stars They are not a marginal scenario for the first stars, but more likely the dominant one at [Fe/H] < - 4.0 ! The effects are larger at lower [Fe/H].

Mixing may also produce
a Li-depletion
(cf. talk by Aguado)

 $\frac{\text{Some evidences:}}{\text{LGRBs}} \leftarrow \text{Hypernovae} \leftarrow \text{SNIc} \leftarrow \text{WO}$

The End