ERROR BUDGETS IN HIGH PRECISION RADIAL VELOCITY MEASUREMENTS

SAM HALVERSON

SAGAN FELLOW, MIT

What does a 10 cm s⁻¹ shift in velocity look like?

TEM image of silicon wafer lattice (typical CCD)

What does a 10 cm s⁻¹ shift in velocity look like?

1/1000th of a pixel

TEM image of silicon wafer lattice (typical CCD)

What does a 10 cm s⁻¹ shift in velocity look like?

1/1000th of a pixel

TEM image of silicon wafer lattice (typical CCD)

e.g. Bouchy+ 2001, Halverson+ 2016, Gibson+ 2018

Now in the era where no single source of instrumental noise dominates

Now in the era where no single source of instrumental noise dominates

Now in the era where no single source of instrumental noise dominates

Calibratable error examples

800 mm

Examples of errors *not* tracked by calibration source

• Fundamentally, *spectrometer records monochromatic images of entrance*

Illumination stability

Telescope pupil

Far-field variations impacting RV measurement performance

e.g. Stuermer+ 2014, Halverson+ 2016

Pupil variation within spectrometer lead to changes in effective aberrations

Detector effects: Charge transfer *inefficiency*

Readout corner

Spectral orders

Bouchy+ 2009, Blake+ 2017, Halverson+ 2018

CCD fringing can introduce systematic error

Example CCD flat, showing clear fringing structure

~1 m s-1 precision not demonstrated at reddest (>800 nm) wavelengths on CCDs

Slide credit: Arpita Roy

CCD stich boundaries

Molaro+ 2013

The atmosphere contributes more than telluric absorption

You are only as precise as your calibration source

e.g. Bouchy+ 2001, Murphy+ 2007, Halverson+ 2014

Pushing to 10 cm s⁻¹ will unveil a forest of new challenges

