ERROR BUDGETS IN HIGH PRECISION RADIAL VELOCITY MEASUREMENTS

SAM HALVERSON

SAGAN FELLOW, MIT

What does a 10 cm s⁻¹ shift in velocity look like?

TEM image of silicon wafer lattice (typical CCD)

What does a 10 cm s⁻¹ shift in velocity look like?

1/1000th of a pixel

TEM image of silicon wafer lattice (typical CCD)

What does a 10 cm s⁻¹ shift in velocity look like?

1/1000th of a pixel

TEM image of silicon wafer lattice (typical CCD)

e.g. Bouchy+ 2001, Halverson+ 2016, Gibson+ 2018

e.g. Avila+ 2008, Sturmer+ 2014, Halverson & Roy+ 2015

Roy+ 2018

Now in the era where no single source of instrumental noise dominates

Now in the era where no single source of instrumental noise dominates

Total NEID instrumental error budget: 27.0 cm s ⁻¹							
Instrument (uncalibratable): 15.1 cm s ^{.1} (30.6%)	25%	Calibration source (uncalibratable): 11.5 cm s ^{.1} (18.7%)					
Fiber & illumination: 8.7 cm s ⁻¹	i i	Calibration accuracy: 5.7 cm s ⁻¹					
Calibration source modal noise 2.5 cm s ¹	Instrument (calibratable): 11.2 cm s ^{.1} (1.1%)	Stability 4.0 cm s ¹					
<u>Continuum_modal_noise</u> <mark>2.5_cm_s⁻¹_</mark>	Thermo-mechanical: 7.8 cm s ⁻¹	Photon noise 4.0 cm s ⁻¹					
Near-field scrambling 3.5 cm s ⁻¹	Thermal stability (grating) 3.5 cm s ¹						
Far-field scrambling 5.0 cm s ⁻¹	Thermal stability (cross-disp.) 3.0 cm s ⁻¹	Future of survey (in additional black)					
Stray light 5.0 cm s ¹	Thermal stability (bench) 3.0 cm s ¹	18.7 cm s ⁻¹ (49.6%)					
Polarization 2.0 cm s ⁻¹	Vibrational stability 2.0 cm s ⁻¹	Calibration process: 10 cm s ⁻¹					
Detector effects: 7.1 cm s ⁻¹	Pressure stability <0.1 cm s ⁻¹	Software algorithms 10 cm s ⁻¹					
Readout thermal change 5.0 cm s ⁻¹	LN2 fill transient 1.0 cm s ⁻¹						
Charge transfer inefficiency 5.0 cm s ⁻¹	Zerodur phase change 5.0 cm s ⁻¹	Telescope: 12.2 cm s ⁻¹					
		Guiding scrambling –					
Barycentric correction: 1.7 cm s ⁻¹	Detector effects: 8.1 cm s ⁻¹	ADC 6.9 cm s ⁻¹					
Algorithms 1.0 cm s ¹	Pixel inhomogeneities 1.0 cm s ⁻¹	Focus 5.0 cm s ⁻¹					
Exposure midpoint time 1.0 cm s ⁻¹	Electronics noise 1.0 cm s ⁻¹	Windshake 8.0 cm s ⁻¹					
Coordinates and proper motion 1.0 cm s ⁻¹	Stitching error 3.0 cm s⁻¹						
	CCD thermal expansion 2.0 cm s ⁻¹	Atmospheric effects: 14.1 cm s ⁻¹					
Reduction pipeline: 10 cm s ⁻¹	Readout thermal change 5.0 cm s ⁻¹	Micro-telluric contamination 10 cm s ⁻¹					
Software algorithms 10 cm s ⁻¹	Charge transfer inefficiency 5.0 cm s ⁻¹	Sky fiber subtraction 10 cm s ⁻¹					

Now in the era where no single source of instrumental noise dominates

KPF PDR error budget spread	dsheet, a	ll units in	cm/s				
Instrumental errors (uncalibratable)	22.23		Instrumental errors (calibratable)	18 53		Calibration source (uncalibratable)	15.00
instrumental errors (uncalibratable)	22.23		Calibratable error contribution	1 85	-		13.00
Fiber 8 illumination	10.47			1.05	-	Calibration accuracy	11 10
	10.47		Therme mechanical	10.10	-	Calibration accuracy	10.00
Calibration source modal noise	2.50		Thermo-mechanical	12.13		Photon points	TU.UU
Continuum modal noise	2.50		Thermal stability (grating)	3.00		Photon noise	5.00
Near-field scrambling	8.00		Thermal stability (cross-disp.)	5.00			
Far-field scrambling	5.00		Thermal stability (bench)	4.00		Calibration process	10.00
Stray light & ghosts	5.00		Thermal stability (cameras)	6.80		Software algorithms	10.00
Fiber-fiber contamination	5.00		Vibrational stability	1.00			
Polarization	2.00		Pressure stability	5.00		External errors (uncalibratable)	18.94
Focal ratio degradation (science)	7.80		Zerodur phase change (Echelle)	5.00			
Focal radio degradation (calibration)	7.80					Telescope	12.60
Double scrambler drift	8.00					Guiding (")	0.05
			Detector effects	14.00		ADC	5.80
			Pixel inhomogeneities	5.00		Focus	5.00
Detector effects	7.07		CCD thermal expansion	5.00		Injection angle variations	10.00
Pixel center offsets	5.00		Readout thermal change	11.00			
Charge transfer inefficiency	5.00		Charge transfer inefficiency	5.00		Atrmospheric effects	14.14
						Micro-telluric contamination	10.00
			Traced with calibration	n fiber		Scattered sunlight contamination	10.00
Barycentric correction	1.73						
Algorithms	1.00						
Exposure midpoint time	1.00						
Coordinates and proper motion	1.00		Not traced with calibrati	on fiber			
						Total instrumental error (cm/s):	32.8824
Reduction pipeline	10.00						
Software algorithms	10.00						

Calibratable error examples

Camera optical elements have measurable dn/dT, CTE

Camera optical elements have measurable dn/dT, CTE

		Centroid shif -100	t in dispers	ion directio 0	n for 100 n	nK thermal (100	change (c	m s ⁻¹] 200	_
]
590 nm						1			/ (18.0 cm s ^{-'} , -245.5 cm s ^{-'})
584 nm	·		·			,	,		(16.9 cm s ⁻¹ , -224.9 cm s ⁻¹)
570 pm	*	N.	*	<i>,</i>	÷	+	1	1	(15.0 om o ⁻¹ , 204.8 om o ⁻¹)
575 1111							7		(15.9 cm s , -204.8 cm s)
573 nm	~				·-·-·				(15.0 cm s ⁻¹ , -185.3 cm s ⁻¹)
568 nm		•	•				,		(14.1 cm s ⁻¹ , -166.3 cm s ⁻¹)
563 nm							*	· · · ·	$(13.1 \text{ cm s}^{-1} - 147.8 \text{ cm s}^{-1})$
505 1111		· · · · · · · · · · · · · · · · · · ·						·····	
558 nm	~			\$	\$	*			(12.3 cm s ⁻¹ , -129.8 cm s ⁻¹)
553 nm	···-		•	+			·,·		(11.4 cm s ⁻¹ , -112.1 cm s ⁻¹)
548 nm								,	(10.6 cm s ⁻¹ , -95.0 cm s ⁻¹)
543 nm									(9.8 cm s ⁻¹ -78.3 cm s ⁻¹)
500									$(0.0 \text{ cm} \text{ c}^{-1}, 0.0 \text{ cm} \text{ c}^{-1})$
538 nm					•••••	_,			(8.9 cm s , -62.0 cm s)
533 nm			•••••		•••••••••••••••••••••••••••••••••••••••	•		ee-	(8.2 cm s ⁻¹ , -46.1 cm s ⁻¹)
529 nm	-				• • • • • • • • • • • • • •	•·	•	e•e•	(7.5 cm s ⁻¹ , -30.6 cm s ⁻¹)
524 nm						· -	•	··-·**·-·-·**	(6.7 cm s ⁻¹ , -15.5 cm s ⁻¹)
520 nm		•··-·-••+	· - · - · - • -				.	··	(6.0 cm s ⁻¹ , -0.8 cm s ⁻¹)
515 nm		÷	.						(5.3 cm s ⁻¹ , 13.6 cm s ⁻¹)
511 nm									(4.6 cm s ⁻¹ , 27.7 cm s ⁻¹)
507 nm		· · · · · · · · · · · · · · · · · · ·							$(4.0 \text{ cm s}^{-1}, 41.4 \text{ cm s}^{-1})$
503 nm		·	.						$(3.3 \text{ cm s}^{-1} 54.7 \text{ cm s}^{-1})$
499 nm		L	a						$(2.7 \text{ cm s}^{-1}, 67.7 \text{ cm s}^{-1})$
495 nm		·		L					$(2.1 \text{ cm s}^{-1}, 80.4 \text{ cm s}^{-1})$
491 nm		·		44		.	%		$(1.5 \text{ cm s}^{-1}, 92.8 \text{ cm s}^{-1})$
487 nm		4	<i>t</i>	1		.			$(0.9 \text{ cm s}^{-1}, 104.9 \text{ cm s}^{-1})$
483 nm		1		11	 .	s		<u>_</u>	$(0.4 \text{ cm s}^{-1}, 116.6 \text{ cm s}^{-1})$
479 nm		· ·		.tt			\$	<u>NN</u>	(-0.2 cm s ⁻¹ , 128.1 cm s ⁻¹)
475 nm		4		.2		\$	<u>\$_</u>	<u>NN</u>	(-0.7 cm s ⁻¹ , 139.3 cm s ⁻¹)
472 nm		4				\$			(-1.2 cm s ⁻¹ , 150.1 cm s ⁻¹)
468 nm		·		.4	...				(-1.7 cm s ⁻¹ , 160.7 cm s ⁻¹)
465 nm		· · · · · · · · · · · · · · · · · · ·		· - f	· · · · · · ·	-	 *	··	(-2.2 cm s ⁻¹ , 171.0 cm s ⁻¹)
461 nm		/	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1 1	1	1	1	(-2.7 cm s ⁻¹ , 181.0 cm s ⁻¹)
458 nm 454 nm		1		1	11				$(-3.1 \text{ cm s}^{-1}, 190.8 \text{ cm s}^{-1})$
451 nm		V	1	1	11				$(-4.0 \text{ cm s}^{-1}, 209.4 \text{ cm s}^{-1})$
448 nm		Ę	<i>t</i>		·				(-4.4 cm s ⁻¹ , 218.3 cm s ⁻¹)
444 nm		V							(-4.8 cm s ⁻¹ , 227.0 cm s ⁻¹)

Camera optical elements have measurable dn/dT, CTE

Examples of errors *not* tracked by calibration source

Fundamentally, spectrometer records monochromatic images of entrance aperture

Illumination stability

Telescope pupil

Far-field variations impacting RV measurement performance

e.g. Stuermer+ 2014, Halverson+ 2016

Pupil variation within spectrometer lead to changes in effective aberrations

Detector effects: Charge transfer inefficiency

Readout corner

Spectral orders

Bouchy+ 2009, Blake+ 2017, Halverson+ 2018

CCD fringing can introduce systematic error

Example CCD flat, showing clear fringing structure

~1 m s⁻¹ precision not demonstrated at reddest (>800 nm) wavelengths on CCDs

Slide credit: Arpita Roy

CCD stich boundaries

Molaro+ 2013

The atmosphere contributes more than telluric absorption

You are only as precise as your calibration source

e.g. Bouchy+ 2001, Murphy+ 2007, Halverson+ 2014

Pushing to 10 cm s⁻¹ will unveil a forest of new challenges

Total NEID instrumental error budget: 27.0 cm s ⁻¹							
Instrument (uncalibratable): 15.1 cm s ^{.1} (30.6%)	25%	Calibration source (uncalibratable): 11.5 cm s ⁻¹ (18.7%)					
Fiber & illumination: 8.7 cm s ⁻¹	i i i	Calibration accuracy: 5.7 cm s ⁻¹					
Calibration source modal noise 2.5 cm s ⁻¹	Instrument (calibratable):	Stability 4.0 cm s ⁻¹					
Continuum_modal_noise <mark>2.5_cm_s⁻¹_</mark>	Thermo mechanical: 7.8 cm ci	Photon noise 4.0 cm s ⁻¹					
Near-field scrambling 3.5 cm s ⁻¹							
Far-field scrambling 5.0 cm s ⁻¹	Inermal stability (grating) 3.5 cm s ⁻¹						
Stray light 5.0 cm s ⁻¹	Thermal stability (cross-disp.) 3.0 cm s ⁻¹	External errors (uncalibratable):					
Polarization 2.0 cm s ⁻¹	Thermal stability (bench) 3.0 cm s ⁻¹	18.7 cm s ⁻¹ (49.6%)					
	Vibrational stability 2.0 cm s ⁻¹	Calibration process: 10 cm s ⁻¹					
Detector effects: 7.1 cm s ⁻¹	Pressure stability < <u>0.1 cm s⁻¹</u>	Software algorithms10 cm s ⁻¹					
Readout thermal change 5.0 cm s ⁻¹	LN2 fill transient 1.0 cm s ⁻¹						
Charge transfer inefficiency 5.0 cm s ⁻¹	Zerodur phase change 5.0 cm s ⁻¹	Telescope: 12.2 cm s ⁻¹					
		Guiding scrambling -					
Barycentric correction: 1.7 cm s ⁻¹	Detector effects: 8.1 cm s ⁻¹	ADC 6.9 cm s ⁻¹					
Algorithms 1.0 cm s ⁻¹	Pixel inhomogeneities 1.0 cm s ⁻¹	Focus 5.0 cm s ⁻¹					
Exposure midpoint time 1.0 cm s ⁻¹	Electronics noise 1.0 cm s ⁻¹	Windshake 8.0 cm s ⁻¹					
Coordinates and proper motion 1.0 cm s ⁻¹	Stitching error 3.0 cm s ⁻¹						
	CCD thermal expansion 2.0 cm s ⁻¹	Atmospheric effects: 14.1 cm s ^{.1}					
Reduction pipeline: 10 cm s ⁻¹	Readout thermal change 5.0 cm s ⁻¹	Micro-telluric contamination 10 cm s ⁻¹					
Software algorithms 10 cm s ⁻¹	Charge transfer inefficiency 5.0 cm s ⁻¹	Sky fiber subtraction 10 cm s ⁻¹					