

UNIVERSITÉ Grenoble Alpes

Mitigating stellar signals to reveal other Earths

Review on stellar processes and approaches

Nadège Meunier

EPRV IV, Grindelwald, March 2019

Outline of the talk

Stellar signals in RV measurements

- Impact of magnetic activity and flows on RV
- Typical amplitudes and scales
- Dependence on spectral type

How to mitigate them ?

- General approaches to test performance
- Methods

SILSO graphics (http://sidc.be/silso) Roval Observatory of Belgium 2017 December 1

Part I : Stellar signals in RV measurements

Contrast of spots or plages + rotation \rightarrow spurious RV

A few properties

Typical time scales: week-months

- Finite lifetime + evolution
- Rotationnal modulation (ΔΩ, dispersion) + harmonics

Amplitude in RV

RV jitter < I m/s for G-K (Sun ~0.3-0.4 m/s)</p>

Impact of

- Inclination
- Wavelength
- Spectral type, Prot
- Degeneracy spots/plages
- Magnetic fields → Zeeman effect Reiners 13

Oscillations

- Typically ~ a few min for solar type stars (p-modes), ~I m/s
 - Many peaks in the power spectrum with well-defined envelope (Kjeldsen95, ...)
 - Easily averaged Dumusque+11, Chaplin+19
- Amplitude and frequency increases slightly with Teff
- New: impact of sectoral r-modes, Lanza+19
 - Main mode for the Sun = 0.44 cm/s; 19.16d

Lanza+19

Granulation

Typical scales for the Sun

- Lifetime ~10 minutes (but large distribution)
- Size ~1000 km
- $\sim 10^6$ cells
- Flows ~km/s
- RV jitter due to solar granulation ~0.8 m/s (Meunier+15)
 - Different realisations of the 10⁶ granules over time
 - MHD numerical simulations Cegla+18
 - Increases with Teff: numerical simulations Magic+, Beeck+, ... observation Gray 09, Dumusque+11, Meunier+17,18
- Strong distorsion of the line shape
 - Complex bisector shapes
 - + the convective blueshift
- Possible to average (Dumusque+11) but difficult to reach a very low level

Pic du Midi Observatory

See reviews

Rieutord+10

Rincon+18

Supergranulation

Large cells outlined by the magnetic network

- Solar lifetimes ~24-48h
- Size ~30000 km
- Flows ~200-300 m/s

RV jitter not well constrained

- Slower flows but less cells on the surface → Jitter remains strong !
- Solar : estimation median value 0.7 m/s (low estimate 0.3 m/s Meunier+15)
- Observed in other stars (Dumusque+II)
- Probably a more important problem than expected!
 - More difficult to average out
 - Power at long periods
 - No intensity counterpart
 - ► →Low detection rates Meunier+19 subm. →

EPRV IV, Grindelwald, March 2

Part I : Stellar signals in RV measurements

Attenuation of the convective blueshift in plages \rightarrow related to flows and magnetic fields

Net redshift, depending on the activity level

- All structures contribute
- Stronger for large active regions
- Signal both at short timescales (Prot) and cycle
- Solar case = dominant RV component

Borgniet+ 15

EPRV IV, Grindelwald, March 2019

Large-scale flows

Impact of meridional circulation Makarov 10

- Inclination
- Expected impact on long timescales (cycle)

Solar meridional circulation

- Toward the pole, amplitude max ~10-20 m/s
- Possibly with complex pattern in latitude
- Small variation over the cycle

• On other stars?

- Decreases for fast rotators (Ballot+07) and with decreasing mass (Matt+11, Ωfixed)
- Lower mass slower rotators / Sun?

2019

Approaches at our disposal

Simulations: solar and stellar

- Simulation of simple or complex configurations
- Fitting challenge (Dumusque+16,17)

Solar observations

- Solar integrated RV + many other variables
- To be compared with disk observations
- Indirect: Meunier+10 (MDI), Lanza+16 (asteroids, ...), Haywood+16 (SDO)
- Direct: HARPS-North and South Dumusque+15, Phillips+16, Collier-Cameron+19, ...
- In addition to tests on actual stellar observations
 - RV jitters Saar+98, Santos00, Wright05, Isaacson & Fischer10
 - Cyclic variations Lovis+||

Part II : How to mitigate them

Activity simulations

One / a few spot(s)

- SAFIR Desort+ 07
- SOAP/SOAP2 Boisse+ 12 Dumusque+ 14
- Starsim Herrero+ 16
- ... (many references / tools !!!)
- To derive typical RV amplitudes and shapes for simple activity configuration
- To study fine effects
- To model observations

Complex & realistic activity pattern of spots and plages / solar like stars

- Observed Sun (Lagrange+ 10, Meunier+ 10, 12, 13) → Simulated Sun (Borgniet+ 15) → Simulated stars F-G-K (Meunier+19 acc., 19b, 19c subm.)
- Dumusque+16 (fitting challenge)
- See also Santos+15 for spots only
- To derive detection limits
- ----- To test samplings, correction methods

Dumusque+ 14

Methods

Based on RV time series

SPOTS/PLAGES Fits of sinusoids / harmonics Boisse+11 Prewhitening at Prot Queloz 09, Hatzes+ 10 Spot modeling Moulds+ 13 Dumusque+ 14 Herrero+ 16

OSCILLATIONS/GRANULATION Averaging (for oscillation/granulation) Dumusque+ 11 Meunier+ 15 Correction with periodograms (for granulation) Sulis+17

Using other indicators from the spectra

Correlation with line bisector span Desort+ 07, Boisse+ 09 Doppler imaging Hebrard+16 Chromospheric emission Boisse+09, Pont+10,Dumusque+12, Meunier+ 13 Robertson+14,Rajpaul+15,Lanza+16, Borgniet+17 With the use of Bayesian analysis (Gaussian processes...) & activity indicators Dumusque+17: Rajpaul+ 15, Tuomi+, Damasso+, Gregory, ...

Using different sets of RVs

Using selected sets of lines (depth) Meunier+ 17 Combining different line properties Dumusque+18 Wavelength dependence/chromatic index Tal-Or+ 18

EPRV IV, G

Some limitations

- All these techniques reduce the RV jitter due to the stellar signal to some level
 - Reliability of the residuals?
 - Do we introduce spurious « planetary » signal? Remove the planetary signal?
- Residual jitter still too high to allow the detection of a one Mearth planet in the habitable zone of a solar type star
 - See results of the fitting challenge Dumusque+17
- Causes
 - **Observing conditions**: sparse temporal sampling, noise...
 - Stellar activity: degeneracies between contributions, very stochastic processes, complex frequency behavior
 - Incomplete models: lack of knowledge, Prot not well known / not unique, missing processes?

Part II : How to mitigate them

Meunier &

Example: correction using chromospheric emission

Widely used

Leads to significant improvment

Correlated with plage filling factor

More complex at short times scales

Performance from simulations

- Solar case need excellent S/N and sampling Meunier&Lagrange12
- Departure from correlation during cycle, depends on inclination, spectral type, amplitude
- Impact correction based on direct correlation
- On-going work to improve the correction

Conclusion

Stellar activity: complex processes, always there

- Lots of degeneracies
- Huge diversity, poorly constrained (and still a lot to understand about the Sun!)
- Lots to learn about stellar activity on the way

Other factors

- Usually sparse sampling in RV, bad phase coverage (Prot)
- Superposed on other contributions (other planets, instrumental...)

Future progresses

- Data analysis: combine many indicators, and different approaches
- Wavelength coverage (Visible/IR)
- Instrumental noise/stability: allow to use more sophisticated techniques
- Need for a lot of telescope time