Reconciling the planetary interpretation of the radial velocity super-Earth K2-18c

Ryan Cloutier

EPRV IV March 18th 2019

K2-18: a mid-M dwarf with a temperate transiting sub-Neptune

K2-18	K2-18b
$JHK_s = 9.76, 9.14, 8.90$	$r_p = 2.7 R_{\oplus}$
$M_{\star} = 0.50 M_{\odot}$	P = 33 days
$R_{\star} = 0.47 R_{\odot}$	$T_{eq} = 265 \text{ K (w/ Earth-like albedo)}$

Benneke et al. (arXiv:1610.07249)

K2-18b RVcharacterizationw/ 75 HARPS RVs

P_b ~ 33 days

Prot ~ 39 days

P?? ~ 9 days

HARPS RVs

K2 photometry

HARPS WF

HARPS S-index

 $\begin{array}{c} \mathsf{HARPS} \\ \mathsf{H}\alpha \end{array}$

HARPS FWHM

HARPS BIS

Cloutier et al. (arXiv:1707.04292)

K2-18 HARPS RV modelling: GP activity + 2 planets

Cloutier et al. (arXiv:1707.04292)

P_b ~ 33 days

Prot ~ 39 days

P?? ~ 9 days

CARMENES RVs

CARMENES WF

CARMENES
Ca-IRT 1

CARMENES Ca-IRT 2

CARMENES Ca-IRT 3

CARMENES $H\alpha$

residuals

- = RVs
- activity
- K2-18b

K2-18 CARMENES RV model:

sinusoidal activity + 1 planet

K2-18 CARMENES RVs:

temporal variations in the 9 day signal

K2-18 CARMENES RVs:

chromatic variations in the 9 day signal

blue orders: 561-689 nm

red orders: 697-905 nm

- 9 day keplerian
- 9 & 33 day keplerians
- 9 & 33 day keplerians
 plus samples from the
 GP activity prior

Discrepancy in the 9 day signal strength due to sampling

- 9 day keplerian
- 9 & 33 day keplerians
- 9 & 33 day keplerians
 plus samples from the
 GP activity prior

Discrepancy in the 9 day signal strength due to weighting

CARMENES

HARPS

Discrepancy in the 9 day signal strength due to anomalous RVs

Discrepancy in the 9 day signal strength due to anomalous RVs

K2-18 HARPS RVs: chromatic variations

blue orders: 498-594 nm

red orders: 618-688 nm

K2-18 HARPS+CARMENES RV modelling: GP activity + planets

*nearly all datasets considered favour a 2-planet model

Final thoughts:

• the notion that individual measurements can have such large effects on periodicities is concerning

Final thoughts:

- the notion that individual measurements can have such large effects on periodicities is concerning
- this is a prime example of a case in which distinguishing between planets and activity is not completely unambiguous

Final thoughts:

- the notion that individual measurements can have such large effects on periodicities is concerning
- this is a prime example of a case in which distinguishing between planets and activity is not completely unambiguous
- the nature of the 9 day signal seems to favour the planetary interpretation but some checks of the nature of the three anomalous CARMENES RVs is desirable:
 - e.g. check if other stars observed by CARMENES on that night are similarly anomalous
 - e.g. check the stability of the telluric correction (or other nightly quality flags) on those nights
 - other ideas?

Stellar activity & model training using photometry

covariance amplitude exponential timescale coherence periodic timescale jitter

K2-18 HARPS RVs:

temporal variations

K2-18 CARMENES activity model

Diversion: planet model comparison methods

