Hi Cannon: Data-driven spectroscopy of cool stars at high spectral resolution

Aida Behmard, Erik Petigura, Andrew Howard

Why is it important to determine stellar parameters I abundances $(R_*, M_*, T_{eff}, [Fe/H], etc.)$?

Transit detections of exoplanets

Need R_* to determine planet radius R_p

Why is it important to determine stellar parameters I abundances $(R_*, M_*, T_{eff}, [Fe/H], etc.)$?

Correlations between stellar abundances planets properties

Stars with high [Fe/H] more likely to host giant planets (Fischer & Valenti + 2005)

How do we determine stellar parameters / abundances before?

Synthetic spectral libraries

SpecMatch-Syn (Petigura+2015)

Synthetic spectral libraries make good abundance / parameter predictions for these stars

The Cannon

Data-driven (ML) approach for predicting stellar "labels" (parameters + elemental abundances) from spectra

The Cannon was developed by Melissa Ness (MPIA), Andy Casey (Monash U.), and Anna Ho (Caltech)

The Cannon

"Training Step"

Construct flux model

$$f_{jn} = V(l_n) \cdot \vartheta_j + noise$$

"Test Step"

Apply f_{jn} to test set spectra

Cannon flux model fitting:

$$l_n = [1, T_{eff}, R_*, [Fe/H]...]$$

$$f_{jn}\left(l_n,\vartheta_j
ight)$$

High Resolution Echelle Spectrometer (HIRES) sample

141 stars, K and M dwarfs:

- 3000 K < T_{eff} < 5200 K
- No giants $(R_* < | R_{\odot})$

Labels $(T_{eff}, R_*, [Fe/H])$:

- Interferometry
- SED Modeling
- Gaia Parallaxes

Evaluating *Cannon* performance: Cross-validation bootstrap scheme

The Cannon cannot make predictions for spectra not well-represented in training set!

...diversify the training set!

SpecMatch-Syn (Petigura+2015)

Copy each spectrum in training set and artificially broaden

+0-20 km/s

GL896A

Results

 T_{eff} : ~70 K; R_* : ~5%; [Fe/H]: ~0.08 dex

Conclusion

(with some modifications to the spectral sample), **The Cannon** is able to make label predictions for cool stars comparable to the best alt. methods (but is easier to use — data driven!)

Future work

Consider including prior information (line lists, etc.)

Elemental abundance studies

Prediction residuals

Flux model

"complex vectorizer" function model coefficients

$$f_{jn} = V(l_n) \cdot \vartheta_j + noise$$

$$l_n = [1, T_{eff}, R_*, [Fe/H] ...]$$

''Training Step'': fit for model coefficients $artheta_i$ for each flux model

"Test Step": fit for labels l_n for each star in the validation set that best reproduces empirical flux

Synthetic spectral libraries struggle with small, cool stars...

Too bad! Good for finding small, cool planets

Transit method

...And most common stars in the galaxy

M-dwarfs = \sim 75% of stars in solar neighborhood!