Gaussian processes regression networks for the analysis of RV data

João D. R. Camacho

March 19, 2019

João Camacho

Contents

- Context
 - \triangleright Stellar noise problem
- Gaussian processes
 - ▷ Existing frameworks
 - ▷ Gaussian processes regression network
- Tests and results
 - ▷ CoRoT-7
- Conclusions

A E > A E >

3

HD 41248

- Jenkins et al. (2013); ApJ, 771, 41
- Santos et al. (2014); A&A 566, A35

Stellar activity can induce RV signals:

- Periodicity from stellar rotation
- Aperiodicity from active region evolution

A Gaussian process (GP) is a generalization of the multivariate Gaussian distribution.

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x'}))$$

Has been used for exoplanet detection:

- Haywood et al. (2014) \rightarrow CoRoT-7
- Grunblatt et al. (2015) \rightarrow Kepler-78
- Rajpaul et al. (2015) → Gliese 15 and Alpha Centauri B
- Faria et al. (2016) → CoRoT-7
- Cloutier et al. (2018) \rightarrow K2-18
- etc...

¹Rasmussen and Williams (2006)

Some existing multi-output Gaussian processes frameworks

Before explaining my work there are two important GP frameworks to mention.

$$\begin{cases} \Delta RV = V_c G(t) + V_r \dot{G}(t) \\ BIS = B_c G(t) + B_r \dot{G}(t) \\ \log(R'_{HK}) = L_c G(t) \end{cases}$$

$$G(t)\equiv F^2(t),$$

F(t) is the fraction of the visible hemisphere covered in spots. (Aigrain et al. 2012).

• It is a physically-motivated GP framework capable of modelling RV-induced by stellar activity jointly with activity indicators, by assuming the same GP is responsible for all stellar activity signals.

$$\begin{cases} \Delta RV = a_1 G(t) + a_2 \dot{G}(t) + a_3 \ddot{G}(t) + a_4 Z_0(t) \\ data_1 = b_1 G(t) + b_2 \dot{G}(t) + b_3 \ddot{G}(t) + b_4 Z_1(t) \\ (\dots) \\ data_n = n_1 G(t) + n_2 \dot{G}(t) + n_3 \ddot{G}(t) + n_4 Z_I(t) \end{cases}$$

- Extends the Rajpaul et al. (2015) framework to a larger class of models.
- Other stellar activity indicators can carry similar information to the BIS and $log(R'_{HK})$, and thus help further characterize the RV-induced by stellar activity.

Gaussian processes regression network (GPRN)²

A general GP framework capable of taking into account multiples inputs and outputs

• Combines a Bayesian neural network with the flexibility of GPs

$$\mathbf{y}(\mathbf{x}) = \mathbf{W}(\mathbf{x}) \left[\mathbf{f}(\mathbf{x}) + \sigma_f \boldsymbol{\epsilon} \right] + \sigma_y \mathbf{z}$$

$$f_i(x) \sim \mathcal{GP}(0, k_f)$$
$$W_{ij} \sim \mathcal{GP}(0, k_w)$$

A GPRN is in effect an adaptive mixture of GPs, that accommodates input dependent signal and noise correlations between multiple output variables.

² Wilson et al. (2012)	・ロト ・四 ト ・ 王 ト ・ 王 ト	₹ <i>•</i> 0 < @
João Camacho	Gaussian processes regression networks for the analysis of RV data	8 / 16

- $\mathbf{gprn}^3 \rightarrow \mathbf{eventually}$ I'll give it a prettier name.
 - Python implementation that uses either emcee (affine-invariant ensemble sampler) or dynesty (dynamic nested sampling).
 - Since I'm currently developing this package, it is possible that I'll mess up something as I work on it and break everything!
 - ▷ To be used in a future GPRN implementation in kima⁴, a package for the analysis of radial velocity (RV) data (Faria et al. 2018).

³https://github.com/jdavidrcamacho/gprn ⁴https://github.com/j-faria/kima

CoRoT-7 - previous works

A G9V type star, with an average temperature ~ 5250 K, and age $\sim 1.2-2.3$ Gyr (Léger et al. 2009).

- Queloz et al. (2009)
- Haywood et al. (2014)
- Faria et al. (2016)

Very active star with two confirmed planets.

- CoRoT-7b P ~ 0.85 days and K ~ 3.97 m/s
- CoRoT-7c P \sim 3.70 days and K \sim 5.55 m/s

CoRoT-7 - GPRN

P → periodic kernel

$$P(x, x') = \theta_P^2 \left[-\frac{2}{l_P^2} \sin^2 \left(\frac{\pi}{P} |x - x'| \right) \right]$$

 $SE \rightarrow$ squared exponential kernel

$$SE(x,x') = \theta_{SE}^2 exp\left(-\frac{(x-x')^2}{2l_{SE}^2}\right)$$

3

CoRoT-7 - results

 $\begin{array}{l} \mbox{Period} \ (\mbox{days}) = 22.704^{+0.228}_{-0.168} \\ \mbox{Periodic scale} = 1.197^{+0.171}_{-0.151} \\ \mbox{Decay timescale} \ (\mbox{days}) = 1100.187^{+744.159}_{-670.123} \end{array}$

	Our work	Faria et al.(2016)	Haywood et al.(2014)
P _b (days)	$0.85358^{+0.00030}_{-0.00009}$	$0.85424^{+0.0071}_{-0.00126}$	$0.085359165 \pm 5 \times 10^{-8}$
$K_b (m/s)$	$3.58\substack{+0.17\\-0.21}$	$3.97^{+0.62}_{-0.55}$	3.42 ± 0.66
e _b	$0.046\substack{+0.005\\-0.005}$	$0.045\substack{+0.053\\-0.027}$	0.12 ± 0.07
P_c (days)	$3.6957^{+0.0024}_{-0.0233}$	$3.69686\substack{+0.00036\\-0.00026}$	3.70 ± 0.02
$K_c (m/s)$	$5.58\substack{+0.78 \\ -1.02}$	$5.55^{+0.34}_{-0.31}$	6.01 ± 0.47
e _c	$0.020\substack{+0.007\\-0.005}$	$0.026\substack{+0.033\\-0.017}$	0.12 ± 0.06

白 ト イヨ ト イヨ ト

3

 A "true" GPRN will not be as simplistic as the example shown today.
 Different nodes should (in theory) be capable of dealing with other processes that might be affecting our data.

- How to interpret the GPRN parameters?
 - SE timescale ~ 1100 days?
 It's not the average lifespan of the active regions.
 - ▷ If one of the datasets has no relation with the others should we see its weight $\theta \rightarrow 0$ for a given node?

Thank you!

This work is financed by FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalização (POCI), and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia in the framework of the project POCI-01-0145-FEDER-028953 and POCI-01-0145-FEDER-023113.

João Camacho

ロビスモビスモア

Gaussian processes regression networks for the analysis of RV data $16\ /\ 16$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▶ ▲□▶

Camacho

Periodic kernel

Period $\rightarrow \mathcal{U}(10, 40)$ Periodic scale $\rightarrow \mathcal{U}(0, 2)$

Squared Exponential kernel

Timescale
$$\rightarrow \mathcal{U}(\sim 7, \sim 2378)$$

RV " θ " $\rightarrow \mathcal{U}(0, \sim 105.4)$
FWHM " θ " $\rightarrow \mathcal{U}(0, \sim 8.5)$
BIS " θ " $\rightarrow \mathcal{U}(0, \sim 10.4)$
 $log(R'_{hk})$ " θ " $\rightarrow \mathcal{U}(0, \sim 8.8)$

Jitters $\rightarrow \mathcal{U}(0, 2\sigma)$

Keplerians

$$P_{b} = \rightarrow \mathcal{N}(0.85359165, 0.001)$$

$$K_{b} = \rightarrow \mathcal{U}(3, 4)$$

$$e_{b} = \rightarrow \mathcal{N}(0.04, 0.01)^{5}$$

$$\omega_{b} = \rightarrow \mathcal{U}(0, 2\pi)$$

$$\phi_{b} = \rightarrow \mathcal{U}(0, 2\pi)$$

$$P_{c} = \rightarrow \mathcal{N}(3.70, 0.1)$$

$$K_{c} = \rightarrow \mathcal{U}(5, 6)$$

$$e_{c} = \rightarrow \mathcal{N}(0.03, 0.01)^{5}$$

$$\omega_{c} = \rightarrow \mathcal{U}(0, 2\pi)$$

$$\phi_{c} = \rightarrow \mathcal{U}(0, 2\pi)$$

Offsets $\rightarrow \mathcal{U}(\min, \max)$

⁵Truncated between 0 and 1 Camacho