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Abstract

The present paper deals with cylindrically symmetric metric in
the form of Marder (1958) with Saez-Ballester theory of gravitation
in the presence of perfect fluid and dark energy. In order to obtain
the deterministic solution of the field equations we have assumed that
the expansion scalar in the model is proportional to the Eigen value
of the shear tensor. We have also assumed that the two sources, here
the perfect fluid and dark energy interact minimally with separate
conservative parts of their energy momentum tensors together with
the constant EoS parameter of the perfect fluid. The role of the dark
energy in the present model with variable equation of state parameter
is stuied more in detail. Some physical properties of model are also
discussed.
Keywords : Cylindrically symmetric metric, perfect fluid and dark
energy as the source, Saez-Ballester theory of gravitation.
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1 Introduction

The most remarkable astrophysical observations in the modern cosmology
have revolutionized our understanding about cosmology. According to the
cosmologists our current universe is not only expanding but also accelerating.
The direct evidence comes from distance measurements and analysis of type
Ia supernovae (SN Ia), measurements of cosmic microwave background as
well as large scale structure strongly suggest that present universe is domi-
nated by the standard candle known as dark energy and it is due to because
of cosmic accelerated expansion of the universe [1]-[9]. According to Einsteins
general theory of relativity in order to have such type of accelerated expan-
sion of the universe, it is required to introduce new component to matter or
the perfect fluid distribution of the universe with a large negative pressure.
This new component most commonly known as dark energy. Thus from the
recent observations obtained by the cosmologists it has been realized that
without dark energy we can not explain the universe. The exact nature of
the dark energy is known to be very homogeneous and not interact with any
other fundamental forces except gravity. The form of the dark energy is not
very dense so it is difficult to detect in the laboratory for the cosmologists.
As the nature of dark energy and dark matter is unknown many radically
different models have been proposed such as quintessence, tachyon, chap-
lygin gas, as well as generalized chaplygin gas etc [10]-[15]. Having some
limitations in Einstein theory of general relativity since it does not seems
to resolve some of the important problems in the cosmology such as dark
matter or the missing matter problems many researchers attracted towards
the alternative theories of gravitation. Brans Dicke theory, Barbers self cre-
ation theory, Saez-Ballester theory of gravitation are some of the alternative
theories of gravitations [16]-[25]. Also,different two fluid models discussed by
some researchers [26]-[29]
The present paper deals with Saez-Ballester theory of gravitation. In Saez-
Ballester theory of gravitation metric is coupled with a dimensionless scalar
field φ in a simple manner. This φ-coupling gives a satisfactory description
of the weak fields. Inspite of the dimensionless character of the scalar field,
an antigravity regime appears in this theory [30]-[35]. In order to obtain
the deterministic solution we have assumed that two sources of the perfect
fluid and dark energy interact minimally with independent conservation of
their energy momentum tensors with constant EoS parameter of the perfect
fluid.. We have investigated cylindrically symmetric cosmological model in
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the form of Marder (1958) . We have obtained some physical parameters and
also discussed their physical behaviors [36]-[39].

2 Model and Field Equations

We consider cylindrically symmetric metric in the form of Marder (1958)
given by

ds2 = A2
1(dx

2 − dt2) + A2
2dy

2 + A2
3dz

2 (1)

Where the metric potentials A1, A2, A3 are the functions of cosmic time.
Here it is important to note that by using the co-ordinate transformations
t →

∫
A1(t)dt metric given by equation (1) can turned into Bianchi type I.

But for the sake of simplicity in the present paper we retain the metric given
by equation (1).
The field equations of the Saez- Ballester scalar tensor theory are

Rij −
1

2
Rgij −$φn

(
φ,iφ,j −

1

2
gijφ,kφ

,k

)
= −Tij (2)

Where the scalar field φ satisfying the equation

2φnφ,i,i + nφn−1φ,kφ
,k = 0 (3)

and Tij = T
(m)
ij + T

(de)
ij (4)

is the overall energy momentum tensors with T
(m)
ij as the energy momentum

tensor of the ordinary matter or the perfect fluid and T
(de)
ij as the energy

momentum tensor of the dark energy component. These are respectively
given by

T
(m)j
i = [T 4

4 , T
1
1 , T

2
2 , T

3
3 ] = diag[−ρ(m), p(m), p(m), p(m)] (5)

= diag[−1, ω(m), ω(m), ω(m)]ρ(m),

T
(de)j
i = [T 4

4 , T
1
1 , T

2
2 , T

3
3 ] = diag[−ρ(de), p(de), p(de), p(de)] (6)

= diag[−1, ω(de), ω(de), ω(de)]ρ(de).
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Where ρ(m), p(m) are the energy density and pressure of the perfect fluid
component respt. Whileρ(de), p(de) are the energy density and pressure of the

DE component respectively where as ω(m) = p(m)

ρ(m) and ω(de) = p(de)

ρ(de)
. Also in

equation (2)$ and n are constants.
Now, the Saez-Ballester field equations (2) and (3) for the metric (1) with
the help of equations (5) and (6) yield the following system of equations

1

(A1)2

(
Ä2

A2

+
Ä3

A3

− Ȧ1Ȧ2

A1A2

+
Ȧ2Ȧ3

A2A3

− Ȧ1Ȧ3

A1A3

)
− $φnφ̇2

2(A1)2
(7)

= −ω(m)ρ(m) − ω(de)ρ(de),

1

(A1)2

(
Ä1

A1

+
Ä3

A3

− (Ȧ1)
2

(A1)2

)
− $φnφ̇2

2(A1)2
= −ω(m)ρ(m) − ω(de)ρ(de), (8)

1

(A1)2

(
Ä1

A1

+
Ä2

A2

− (Ȧ1)
2

(A1)2

)
− $φnφ̇2

2(A1)2
= −ω(m)ρ(m) − ω(de)ρ(de), (9)

1

(A1)2

(
Ȧ1Ȧ2

A1A2

+
Ȧ2Ȧ3

A2A3

+
Ȧ1Ȧ3

A1A3

)
+
$φnφ̇2

2(A1)2
= ρ(m) + ρ(de), (10)

φ̈+

(
Ȧ2

A2

+
Ȧ3

A3

)
φ̇+

nφ̇2

2φ
= 0. (11)

Also the energy conservation equationT ij;j = 0 yields

ρ̇(m) + 3[1 + ω(m)]Hρ(m) + ρ̇(de) + 3[1 + ω(de)]Hρ(de) = 0, (12)

3 Solution of the field equations

The field equations (7) to (11) is a system of five independent equations in
eight unknowns A1, A2, A3, φ, ω

(m), ρ(m), ω(de)

and ρ(de). Therefore in order to obtain an explicit solution of the system
we require three more suitable assumptions relating these three unknowns.
Let us first assume the condition that the expansion scalar in the model is
proportional to the shear scalar which leads to

A1 = (A2A3)
m,m 6= 1 (13)
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Differentiating equation (13) and with some little manipulation we have

Ȧ1

A1

= m

(
Ȧ2

A2

+
Ȧ3

A3

)
(14)

and

Ä1

A1

= m

[
Ä2

A2

+
Ä3

A3

− Ȧ2
2

A2
2

− Ȧ3
2

A2
3

]
+m2

(
Ȧ2

A2

+
Ȧ3

A3

)2

(15)

Now comparing equation (8) and (9) we get

Ä2

A2

− Ä3

A3

= 0. (16)

Substracting equation (9) from equation (7) we get

Ä2

A2

− Ä1

A1

+
(Ȧ1)

2

(A1)2
− Ȧ1Ȧ2

A1A2

+
Ȧ2Ȧ3

A2A3

− Ȧ1Ȧ3

A1A3

= 0. (17)

Equation (17) with the equations (14) and (15) gives

Ä2

A2

+
Ȧ2Ȧ3

A2A3

= 0. (18)

For the sake of simplicity by setting the relation we have used the substitu-
tions

A2A3 = λ and
A2

A3

= γ. (19)

So that

(A2)
2 = λγ and (A3)

2 =
λ

γ
. (20)

Then the equations (16) and (18) respectively takes the form

d

dt
(
λγ̇

γ
) = 0 (21)

and
d

dt

[(
λ̇

λ
+
γ̇

γ

)
λ

]
= 0 (22)
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Integrating equations (21) , (22) we get

λ = c2t+ c3 i.e. A2A3 = c2t+ c3. (23)

Where c2 and c3 are the constants of integrations.
Thus from equations (13) and (23) we get a metric potential

A1 = (c2t+ c3)
m. (24)

Equation (21) using equation (23) we get

γ = c4(c2t+ c3)
b. (25)

Where b and c4 are the constants.
From equation (20) with the equations (23) and (25) we get the remaining
metric potentials

A2 = c(c2t+ c3)
( b+1

2
) and A3 = D(c2t+ c3)

( 1−b
2

) (26)

Where b, c, D are the constants.
Thus our required cosmological model for the metric (1) is given by

ds2 = (c2t+c3)
2m(dx2−dt2)+c2(c2t+c3)

(b+1)dy2+D2(c2t+c3)
(1−b)dz2. (27)

Scalar field φ from equation (11) with the help of the equations (24), and
(26) for the model (27) is given by

φ =
[
log(c2t+ c3)

k0
] 2

n+2 (28)

Where k0 is constant.
To determine the energy density of the perfect fluid and DE components
as well EoS parameters of the perfect fluid and DE components we have to
assume following two more additional constraints.
As per the proposed assumption according to Akarsu and Kininc [11] let
us suppose that the two sources of perfect fluid and dark energy interact
minimally. Therefore energy conservation equation given by (12) can be
split up into two separately additive conserved components which are given
by

ρ̇(m) + 3[1 + ω(m)]Hρ(m) = 0, (29)

ρ̇(de) + 3[1 + ω(de)]Hρ(de) = 0. (30)
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Finally we have assumed that the EoS parameter of the perfect fluid to be

constant, i.e. ω(m) = p(m)

ρ(m) = constant.

While ω(de) is allowed to be a function of cosmic time since the current
observational cosmological data from SN Ia, CMB and large scale structures
mildly favor dynamically evolving dark energy crossing the phantom divide
line (PDL).

3.1 Some physical parameter

The directional Hubble parameters of the model (27) are defined as

Hx =
Ȧ1

A1

=
mc2

(c2t+ c3)
, Hy =

Ȧ2

A2

=
c2(b+ 1)

2(c2t+ c3)
, Hz =

Ȧ3

A3

=
c2(1− b)

2(c2t+ c3)
.

Therefore mean Hubble parameter for the model is found to be

H =
1

3
(Hx +Hy +Hz) =

(m+ 1)c2
3(c2t+ c3)

(31)

The mean anisotropy parameter ∆ of the expansion for the model is obtained
as

∆ =
1

3

∑[
Hi −H
H

]2
=

(2m− 1)2 + 3b2

2(m+ 1)2
(32)

By the definition shear scalar and expansion scalar for the model (27) are
respectively found to be

σ2 =
(4m2 − 4m+ 1 + 3b2)c22

6(c2t+ c3)2
(33)

θ =
c2(2m+ 1)

c2t+ c3
(34)

Integraing equation (29) by using assumption of EoS parameter ω(m) of the
perfect fluid to be constant we get

ρm =
k2

(c2t+ c3)
(m+1)[1 + ω(m)]

(35)

Where k2 being constant of integration.
Equation (10) with the help of the equations (24), (26) and (35) gives the
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energy density of the DE component as

ρ(de) =
c22[(n+ 2)2(4m+ 1− b2) + 8$k20]

4(n+ 2)2(c2t+ c3)2(m+1)
− k2

(c2t+ c3)(m+1)[1 + ω(m)]
(36)

Equation (8) with the help of the equations (24), (26), (35) and (36) gives
EoS parameter of the DE component as

ω(de) = − 1

ρ(de)

[
c22[(n+ 2)2(b2 − 4m− 1)− 8$k20]

4(n+ 2)2(c2t+ c3)2(m+1)
+

ω(m)k2
(c2t+ c3)(m+1)[1 + ω(m)]

]
(37)

4 Discussion and conclusion:

The metric potentials A1, A2, A3 all are finite at the initial moment but
vanish when t = − c3

c2
and increases with increase in cosmic time. Thus model

have point type singularity at the initial epoch. Similarly the directional
Hubbles parameters as well as mean Hubble parameter are the functions of
cosmic time t. All these parameters are finite at the early time of universe and
diverge at initial singularity t = − c3

c2
but vanish when cosmic time is infinite.

The mean anisotropy parameter of the model is constant throughout the
evolution of the universe. The shear scalar as well as expansion scalar having
the same behavior as that of the Hubble parameters. The energy density of
the perfect fluid is constant when cosmic time is zero and decreases with
the expansion of the universe. In the present model EoS parameter of dark
energy is a function of cosmic time. The nature of the dark energy depends on
constants involved in the expression of ω(de) . Also lim σ2

θ2
6= 0 when t→∞.

In the present paper we have investigated cylindrically symmetric metric in
the form of Marder by assuming that the two sources of the perfect fluid and
dark energy interact minimally with EoS parameter of the perfect fluid to be
constant. Also we have assumed the present paper is that current universe is
dominated by the dark energy which can describe that the current universe
is accelerating and consistent with observations.
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