Exploring gravity in the strong field regime with high throughput X-ray measurements

Luigi Stella <u>INAF, Oss</u>ervatorio Astronomico di Roma

ESA's Cosmic Vision program

3. What are the fundamental physical laws of the Universe?

3.1 Explore the limits of contemporary physics

Use stable and weightless environment of space to search for tiny deviations from the standard model of fundamental interactions

3.2 The gravitational wave Universe

Make a key step toward detecting the gravitational radiation background generated at the Big Bang

3.3 Matter under extreme conditions

Probe gravity theory in the very strong field environment of black holes and other compact objects, and the state of matter at supra-nuclear energies in neutron stars

Does matter orbiting close to a Black Hole event horizon follow the predictions of General Relativity?

MOTION OF MATTER CLOSE TO THE EVENT HORIZON

ASTROPHYSICS NEAR BLACK HOLES: STRONG FIELD EFFECTS

- Inner Stable Circular Orbit
- Orbital motion near ISCO
- Frame dragging, light deflection, Shapiro effect

ASTROPHYSICAL IMPACT

- Black hole spins
- AGN feedback
- Relativistic jets
- Accretion physics

Current best tests of General Relativity: millisecond radiopulsars

RELATIVISTIC EFFECTS ARE SMALL PERTURBATIONS

X-RAY DIAGNOSTICS:

- Precision measurements
- Strong field motions:
 RELATI orbital & epicyclicte
 - Fe line spectral timing
 - Reverberation
 - Doppler tomography
- VERIFY GENERAL RELATIVITY
- Test alternative theories

Accreting Black Holes

Stellar mass Black Holes in X-ray binaries

Supermassive Black Holes in nuclei of active Galaxies (AGN)

- Accretion-released energy leads to powerful X ray emission from the innermost disk regions
- X-ray flux is often very variable and spectra are complex

IRON LINE DIAGNOSTIC PROBES RELATIVISTIC VELOCITY AND REDSHIFT MAP

Line profile integrated over entire flow encodes:

 Strong field relativistic effect: Doppler shifts and boosting, gravitational redshift, strong field lensing

Fe-lines from accretion disks around supermassive black holes in AGNs

Fe-lines probe strong field gravity (~few Rg)

e.g. MCG 6-30-15:

- Kerr BH required to fit line profile

IRON LINES PROBE RELATIVITY PREDICTED VELOCITY AND REDSHIFT MAP

XMM + NUSTAR

Parker, Tomsick+

Parker, Matt+

Stong Field Diagnostic: Quasi Periodic Oscillations

Accreting neutron stars

Accreting black hole candidates

+ few AGN

STRONG FIELD GRAVITY DIAGNOSTICS: FUNDAMENTAL FREQUENCIES OF MOTION

Frequencies of motion in strong gravity

- Epicyclic Resonance (fixed r)
- Relativistic Precession: nodal and periastron

GR orbital, epicyclic and precessional frequ

AB orbital cycle [υφ]
AC vertical epicycle [υθ]
BC nodal precession [υφ-υθ]

General relativity:

$$r_g \equiv GM/c^2 \qquad j \equiv Jc/GM^2$$

$$v_{\varphi} = \sqrt{GM/r^3}/2\pi(1+j(r_g/r)^{3/2})$$

$$v_r^2 = v_{\varphi}^2(1-6(r_g/r)+8j(r_g/r)^{3/2}-3j^2(r_g/r)^2)$$

$$v_{\theta}^2 = v_{\varphi}^2(1-4j(r_g/r)^{3/2}+3j^2(r_g/r)^2)$$

TWO POSSIBLE MISSION APPROACHES

LOFT

Large Observatory For x-ray Timing (ESA)

eXTP

enhanced X-ray Timing and Polarization mission (CAS)

Bright sources: Large Collimated Area Weak/soft sources: Collimated + Focused Area

TWO POSSIBLE MISSION APPROACHES

LOFT
Large Observatory For x-ray Timing
(ESA)

Bright sources: Large Collimated Area

eXTP
enhanced X-ray Timing and
Polarization mission (CAS)

Weak/soft sources: Collimated + Focused Area

THE LOFT SCIENTIFIC PAYLOAD

LAD - Large Area Detector

Effective Area	3.4 m ² @ 2 keV 8.5 m ² @ 8 keV 0.8 m ² @ 30 keV
Energy Range	2-30 keV (30-80 keV ext.)
ENERGY RESOLUTION FWHM	200 eV @ 6 keV
COLLIMATED FOV	1 deg FWHM
ABSOLUTE TIME ACCURACY	1 μs

WFM - Wide Field Monitor

FIELD OF VIEW	5.5 steradian
Position Accuracy (10Σ)	1 arcmin
ENERGY RANGE	2-50 keV
ENERGY RESOLUTION	300 eV @ 6 keV
Collecting Area	1460 cm ²
TIME RESOLUTION	10 μs (trigger) ~minutes (images)
SENSITIVITY (50, GALACTIC CENTER)	330 mCrab (3s) 2.1 mCrab (1day)
GROUND TRANSMISSION OF GRB COORDINATES	< 30s

THE EXTP SCIENTIFIC PAYLOAD

11 X-ray optics, 6200 cm² @6 keV, 4.5m FL, 1' PSF, SDD (or CCD), 0.5-10 keV, <100 µs

2 X-ray optics, 1100 cm² @6 keV, 4.5m FL, 15" PSF, GPD polarimeters, 2-10 keV

3.4 m²"LOFT" SDD detectors, 2-30 keV, <300 eV Wide @ied keMonitor

3 units, 2-50 keV, 4 sr FoV, 80 cm²/unit, 5' angular resolution

STRONG FIELD GRAVITY DIAGNOSTICS: FUNDAMENTAL FREQUENCIES OF MOTION

Frequencies of motion in strong gravity

Inhomogeneities in inner disk

GR orbital, epicyclic and precessional frequencies

RELATIVISTIC EPICYCLIC MOTION

- Precisely measure orbital and epicyclic frequencies at each radius
- Compare curve to GR predictions
- Measure black hole mass and spin to 0.1% precision

IRON LINES PROBE RELATIVITY PREDICTED VELOCITY AND REDSHIFT MAP

General relativity predicted velocity and redshift map of the accretion disk

Line profile integrated over entire flow encodes:

- Strong field relativistic effect: Doppler shifts and boosting, gravitational redshift, strong field lensing
- Observed in Active Galactic Nuclei and X-ray binaries

Combining spectral and timing measurements: Orbiting spot: XMM observations of NGC3516

The excess emission map in the time–energy plane. The pixel size is 2 ks in time and 100 eV in energy. 4 cycles 25 ks orbital period at 9 Rg (XMM - Iwasawa+2004, Turner+2006)

$$M_{X-ray} = 1.5 \ 10^7 \ M_{sun}$$
; $M_{opt} = 1.68(0.33)10^7 \ M_{sun}$

Supermassive black hole

eXTP 1.5 ks 2x integrations

LOFT 3 ks integrations

Doppler shifting for orbits closely around a <u>supermassive</u> black hole

Stellar-mass black hole

Orbital radial velocity curve at ISCO, closely around a <u>stellar</u> mass black hole

Doppler tomography of disk velocity & redshift map.

Typical precision 1.5% in 100 ks

Uses known amplitude of quasi-periodic dynamic signals

Reverberation: energy resolved light echoes

- Probe disk velocity/redshift map as radiation fronts propagate over the disk
- Relativistic effects as a function of absolute radius (e.g. km)

Precessing hot torus: variable geometry reverberation

Energy (keV)

ratio .05

- Frame dragging: central hot torus <u>precesses</u>
- Hard radiation sweeps around over disk
- Reflection line profile varies periodically
- LOFT tracks the line profile, probing the disk velocity and redshift map
- Typical precision 0.3-3%

Stella Vietri 1998 ,Ingram+ 2009, 2012

Polarization of processing inner torus

- polarization degree and angle affected by strong field light bending
- precession changes geometry and thus modulates polarization

(Ingram+ 2015)

eXTP polarization measurements

- 32.768ks exposure
- <p0>=8%, σ_{p0} =1.4%, < ψ_{0} >=-4 degrees, $\sigma_{\psi_{0}}$ =4 degrees
- Flux = 1 photon cm⁻²s⁻¹ assuming absorbed power-law with Γ =2 and N_h=1×10²²cm⁻²
- 40 LAD modules, 2 GPD units

REVERBERATION: LIGHT ECHOES

Variable Flux Reverberation

- Variable hot inner flow irradiates disk
- Probe disk velocity/redshift map as radiation fronts propagate over the disk
- Obtain strong field velocities and relativistic effects as a function of absolute radius

Reverberation detected in XMM data

LOFT improves S/N by

- factor ~6 in AGN
- factor >200 in X-ray binaries!
- → Breakthrough capability ←

Disc reverberation components

LOFT and eXTP cover wide mass range in uniform setting

Stellar mass black hole (or neutron star)

Supermassive black hole

Weakly curved spacetime (~Solar)

COMPLEMENTARY TO GRAVITATIONAL WAVE EXPERIMENTS:

LOFT PROBES <u>STATIONARY</u> SPACETIMES

CONCLUSIONS

- X-ray timing, spectral and spectral/timing diagnostics of accreting black holes will allow us to:
 - verify for the 1st time key predictions of GR in the strong field regime
 - test or constrain some alternative theories of gravity
- Very high throughput combined with good spectral resolution is required: two different missions are being studied, LOFT and eXTP

THANK YOU

