

THE CHERENKOV TELESCOPE ARRAY

Michael Daniel¹, for the the CTA Consortium²

- ¹ University of Liverpool
- ² https://portal.cta-observatory.org/Pages/Home.aspx

TECHNIQUE

CHERENKOV TELESCOPE ARRAY

CTA OBSERVATORY

CTA SITES

ALL SKY COVERAGE

Source count evolution

1989: 1 source (Whipple)

2000: 10 sources (Whipple/HEGRA/Durham)

2010: 100 sources (HESS, MAGIC, VERITAS)

2020: 1000 sources (CTA)?

http://tevcat.uchicago.edu/

Source Types

PWN

Binary XRB PSR Gamma
BIN

HBL IBL FRI FSRQ Blazar LBL AGN (unknown type)

 Shell SNR/Molec. Cloud Composite SNR Superbubble

Starburst

DARK UNID Other

uQuasar Star Forming Region Globular Cluster Cat. Var. Massive Star Cluster BIN BL Lac (class unclear) WR

LARGE SIZED TELESCOPE (LST)

Science drivers

Lowest energies (< 200 GeV) Transient phenomena, DM, AGN, GRB, pulsars

Characteristics

23m diameter parabolic design 370 m² effective mirror area 28 m focal length 1.5 m mirror facets with active mirror control 4.5° field of view composed of 0.11° PMT pixels Carbon-fibre arch structure (fast repointing)

Array layout

South site: 4 LST North site: 4 LST

Status

Some elements prototyped Prototype telescope under construction in La Palma (to become first full LST)

MEDIUM SIZED TELESCOPE (MST)

Science drivers

Mid energies (100 GeV – 10 TeV) DM, AGN, SNR, PWN, binaries, starbursts, EBL, IGM

Characteristics

Modified Davies-Cotton design
12 m diameter, 90 m² effective mirror area
1.2 m mirror facets
16 m focal length
8° field of view with 0.18° PMT pixels

Array layout

South site: 25 MST North site: 15 MST

Status

Telescope prototyped (Berlin-Adlershof)

Prototype cameras under construction (2 types: NectarCAM & FlashCam)

SMALL SIZED TELESCOPE (SST)

8.5m² effective mirror area

5.6m focal length

9 °fov 0.24°SiPM pixels

ASTRI Schwarzchild-Couder

6m² effective mirror area 2.2m focal length 9.6 °fov 0.17°SiPM pixels

6m² effective mirror area 2.3m focal length 8.6 °fov 0.16°SiPM pixels

Science drivers

Highest energies (> 5 TeV)

Galactic science, PeVatrons, Fundamental Physics (ALPs, LIV)

Array layout

South site: 70 SST

North site: -

Status

Prototypes in Krakow (SST-1M), Mt. Etna (ASTRI), Paris (GCT)

SCT – AN MST EXTENSION

Science drivers

Mid energies (200 GeV – 10 TeV) DM, AGN, SNR, PWN, binaries, starbursts, EBL, IGM

Characteristics

Schwarzschild-Couder design 9.7 m primary diameter 5.4 m secondary diameter 40 m² effective mirror area 5.6 m focal length 8° field of view 0.07° PMT pixels

Array layout

South site: 24 SCT

North site: -

Status

Prototype telescope, including camera, under construction on VERITAS site (Arizona)

DEEP FIELD

SOURCE MONITORING

SURVEY

EXPECTED PERFORMANCE

Sensitivity gain

- access VHE populations
- sample fast variability (AGN, GRB)

$FoV > 8^{\circ}$

- measure extended sources/diffuse emissions
- efficient survey of large fields

Arcmin angular resolution

resolve extended sources (SNR, starbursts)

Broad energy coverage

- < 100 GeV to reach higher redshifts
- >>10 TeV to search for PeVatrons
- enhanced energy resolution (eg DM lines)

Time Domain Astronomy

Coverage from seconds to years

CTA SCIENCE

Shocks Diffusion

Jets Accretion AGN

Starbursts

Shocks

Diffusion

SNRs

Binaries Jets
Accretion

Winds
Pulsars/PWN

Jets

Intergalactic medium

Probes

EBL IGM

HEAVE II.

HEAVE II.

HEAVE III.

HEAVE II

WIMPs ALPs

Dark matter

CTA Themes

- 1. Understanding the origin of cosmic rays and their role in the Universe.
- 2. Understanding the nature and variety of particle acceleration around black holes.
- 3. Searching for the ultimate nature of matter and physics beyond the Standard Model.

GRBs

Jets Shocks

AN OPEN OBSERVATORY

Current assumptions

CTA parties pool the observing time in:

- Open time (for scientists of party countries)
- Consortium time (Key Science Projects) All data will become fully public after a proprietary period.

The CTA Observatory will provide support to non-expert users

Proposal preparation & submission tools (TAC evaluation)

Calibrated, reconstructed & reduced event data (FITS)

Software to analyse data (Fermi-LAT like)

User documentation

Help Desk, Knowledge, Training

KEY SCIENCE PROJECTS

Criteria:

- scale in terms of observing hours
- need for coherent approach across multiple targets/pointings
- technical difficulty of performing required analysis and hence reliance on consortium expertise
 Will become legacy datasets of high value to the wider community

Under consideration:

- Dark Matter Programme
 - dSph
- Galactic Centre
 - synergy with dark matter prog.
- Galactic Plane Survey
 - catalogue, diffuse emission model, PeVatron candidate list, variable sources
- LMC Survey
- Extragalactic Survey
 - 25% sky catalogue
- Transients
 - synergies to MWL/MM partners
- Cosmic Ray PeV-atrons
- Star Forming Systems
 - from mol. clouds to starbursts
- Active Galactic Nuclei
 - long term monitoring, deep exposures of a few sources
- Galaxy Cluster
 - synergy to cosmic-ray/dark matter prog.
- Non-gamma-ray Science
 - Cosmic ray spectrum, electron spectrum, Intensity Interferometry

GAL/SURVEY

EXGAL

Extragalactic Key Science Projects

Active Galactic Nuclei

- Long-term monitoring
- High quality spectra
- Flare Program

AGN physics Cosmology UHECRs Fundamental physics

Extra-Galactic Survey

- Unbiased survey of 1/4 of the sky

Population study and duty cycle New and unknown sources

Lucie Gerard Weds.16:15 19 – VHE&CR

Transients

- Follow-up of external or internal triggers

Gamma-Ray Burst

Galaxy Clusters

- Deep observation of galaxy clusters

Probing cosmic ray in clusters

Lucie Gérard | ExtraGalactic Science with CTA| 2015/12/15 | Page 1

FUNDAMENTAL

CTA TIMELINE Site Decision, Critical Design Review Headquarters Decision, Engagement of Funding Agencies Construction Early Science Key Science **Projects** Dates are only Open indicative! Program

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024 2025

SUMMARY

CTA will be an open observatory comprising arrays of IACTs aiming to:

- Provide energy coverage for photons from 20 GeV to at least 300 TeV, providing reach to high redshifts and extreme accelerators.
- Increase the sensitivity level of current instruments by a factor ~10 at 1 TeV.
- Substantially improve angular resolution and field of view and hence ability to image extended sources.
- Significantly boost detection area, and hence photon rate, providing access to the shortest timescale phenomena.
- Provide access to the entire sky, with sites in two Hemispheres.
- Dramatically enhance surveying capability, monitoring capability, and flexibility of operation, allowing for simultaneous observations of objects in multiple fields,
- Serve a wide user community, with provision of data products and tools suitable for non-expert users.

CTA SYNERGIES

Fermi

Athena

SVOM

ASTROGAM

HAWC

Survey, Alerts

Transient Factories, Surveys...

Alerts

Cosmic rays / SNR Jet-disk connection

Icecube, KM3NET

neutrino alerts

Virgo/LIGO

GW alerts

ISM ionisation BH jet imaging

SKA, LOFAR

Broad band coverage Alerts

BACKUP

VHE (E>10GeV) photons are best detected with Imaging Atmospheric Cherenkov Telescopes telescope array

CTA SCIENCE THEMES

Cosmic Particle Acceleration

How and where are particles accelerated? How do they propagate? What is their impact on the environment?

Probing Extreme Environments

Processes close to neutron stars and black holes? Processes in relativistic jets, winds and explosions? Exploring cosmic voids

Physics frontiers – beyond the Standard Model

What is the nature of Dark Matter? How is it distributed? Is the speed of light a constant for high-energy photons? Do axion-like particles exist?

CTA SCIENCE PROGRAMME

Key Science Programmes (executed by consortium)

Ensure that important science questions for CTA are addressed in a coherent fashion and with a well-defined strategy

Conceived to provide legacy data sets for the entire community

Example: galactic, extragalactic and LMC surveys

Proposal-driven User Programme

Deep investigation of known sources
Follow-up of KSP discovered sources
Multi-wavelength campaigns
Follow-up of ToOs from other wavebands or messengers
Search for new sources

. . .

The γ-ray Horizon

SST-1M

Characteristics

Davies-Cotton design
4 m diameter
8.5 m² effective mirror area
5.6 m focal length
9° field of view
0.24° SiPM pixels

Status

Prototype telescope built in Krakow Camera prototype under construction

ASTRI

Characteristics

Schwarzschild-Couder design

4.3 m primary diameter

1.8 m secondary diameter (monolithic)

6 m² effective mirror area

2.2 m focal length

9.6° field of view

0.17° SiPM pixels

Status

Prototype telescope built on mount Etna Camera prototype under construction

GCT

Characteristics

Schwarzschild-Couder design

4 m primary diameter

2 m secondary diameter

6 m² effective mirror area

2.3 m focal length

8.6° field of view

0.16° MAPM/SiPM pixels

Status

Prototype telescope structure built in Meudon (near Paris)

