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Experimental constraints

« Searches for deviations from 1/r? gravity can test a variety of models of new

physics

« Typically parameterize potential as:

Gm1m2

Vir)=—

Current experimental constraints on non-Newtonian forces:
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Adapted from Ann. Rev. Nucl. Part. Sci. 53 77 (2003),
PRL 98, 021101 (2007),
PRD 78, 022002 (2008),
arXiv:1410.7267 (2014)
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« Typically parameterize potential as:
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Current experimental constraints on non-Newtonian forces:
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Long distance tests

« Deviations at long distance could arise in models accounting for dark energy
(e.g., Vainshtein-type mechanisms) or dark matter (MOND-like theories)

« Recent proposal to use spacecraft with drag free test mass at 1-100 AU:

B. Buscaino, D. DeBra, P. Graham, G. Gratta, and T. Wiser,
Phys. Rev. D 92,104048 (2015) arXiv:1508.06273

Schematic of experimental design: Current and projected constraints:
A (m)
DF feedback thrusters 10010-210-1 10° 10" 10% 10° 10* 10° 10° 107 10® 10°10'°10''10"210"310'
T 107!

& /1
/
o,

Projected
sensitivity s

/
K
o
H ’
3
3
i
3

I m 1073

|

drag-free craft

107'10° 10" 10?

A (AU)

D. Moore, Stanford Texas Symposium, Geneva - Dec. 15, 2015 4



Short range forces

In addition to new forces apparent at astrophysical distances, non-
Newtonian forces can be searched for in the laboratory

Theories attempting to account for the hierarchy problem, dark matter, or
dark energy predict that there could new forces at << 1 mm

Exchange forces from new
scalars (moduli, dilatons, ...):

Large extra dimensions:

Sci. Am. (2003)

e.g., Arkani-Hamed et al., Phys. Lett. B 429, 263 (1998) e.g., Dimopoulos ar.1d Giudice, Phys. Lett. B 379 105 (1996)
Randall and Sundrum, Phys. Rev. Lett. 83, 3370 (1999); Kaplan and Wise, JHEP 08 037 (2000)

Dark energy (“fat” gravitons, screened scalars, ...):

e.g., Sundrum, Phys. Rev. D 69, 044014 (2004)
Khoury and Weltman, Phys. Rev. Lett. 93, 171104 (2004)
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Experimental constraints

- Searches for deviations from 1/r2 gravity can test a variety of models of new

physics
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,,,,,,,,,,,,,,,,, ‘ (Micro- cantilever)

~Bulk.gauge N Geraci et al.,

o bosons U PRD 78, 022002
N (2008)

Experimental constraints at short distance:

Decca etal., (Micro-oscillator)
/ arXiv:1410.7267 (2014)

(Torsion pendulum)
Kapner et al.,

Length scale, A [pm]
Theory regions adapted from PRD 68, 124021 (2003)
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Optical levitation

Photograph of trapped microsphere:

« Suspending test mass with an “optical
spring” offers several advantages:

 Test mass can be isolated from
surroundings and cooled optically

» Dielectric spheres between
~10 nm — 10 um can be used

« Position can be controlled and Schematic of optical levitation technique:
measured precisely with optics -
. . g
« Control over 3D optical potential
enables differential measurements Si0, Au

* At high vacuum, extremely low
dissipation is possible:
Q~ 10" at 1079 mbar

Ashkin & Dziedzic, Appl. Phys. Lett. 19, 283 (1971)
Geraci etal., PRL 105, 101101 (2010)
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Experimental setup

L Simplified optical schematic:
« Developed setup capable of levitating PoED’ P

SiO, microspheres with r=0.5-5 um

Vacuum

chamber
Axial

imaging

filters I
laser

* Microspheres are levitated in vacuum
chamber with A = 1064 nm, ~few mW
trapping laser FPGA

Radial
p—— imaging
laser

* Have demonstrated trapping times of
>10 days at ~107 mbar

Trapping
laser

Photograph of experimental setup:
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Microsphere neutralization

Response amplitude [e]

D. Moore, Stanford

Electrode cross-section:

Have demonstrated controlled discharging
with single e precision

Measure microsphere response to oscillating
electric field while flashing with UV light

Texas Symposium, Geneva - Dec. 15, 2015

Once neutral, have not observed V,,
spontaneous charging in more than 10° s
Example of discharging process:
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Force sensitivity

« (Can also use observed single e steps to perform absolute calibration of
force sensitivity for each microsphere in situ

* Low pressure force Calibration of force sensitivity:

sensitivity limited to: S R
— _17 _1/2 | E""I""I""I""I""I""I""I' ":'
or=5x10""NHz 10| . Measured ]
- Currently limited by laser 7 S 1016 ]
jitter and imaging noise T, 10°} XN <-4
T - 7 | 1 Applied vo/tage;
* Pressure limited sensitivity = 02l = 107" (10 V/mmx 1 e)_-
at 10 mbar: = § < Pressure
7 o8 Lo, Simited noise :
O ~ 1021 N Hz12 = 10t 1077 107 107 107! 10!
_ L2 ; Pressure [mbar] :
l.e., near the quantum limit: 2 100
o :
o ~ \/h(mw?) < |
107 |
10° 10° 10° 10’

Frequency [HZz]
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Search for millicharged particles

» As a first application of this force sensing technique, we have performed a
search for millicharged particles (Igl << 1e) bound in the microspheres

« Sensitive to single fractional charges as smallas 5 x 10° ¢

« Current sensitivity (<1 aN) limited by residual response due to
microsphere inhomogeneities that couple to E-field gradients

Measured residual response:

Angle of response 900

relative to field
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Limits on abundance of millicharged particles:
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Attractor design

« Need attractor that can be placed at
~Um separations from microsphere

« Spatially varying density allows
reduction of backgrounds

« Initial test mass arrays will be Au/Cu,
also investigating Au/Si

Top view:

High p material:
Au, p=20g/cm3

Low p materials:

Cu,p=9g/cm3
Si, p=2g/cm3

200 pm

Images of preliminary fabrication tests:

Side view:

$§s=0.2-5um
t=0.5-3um
r,=5um
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Microsphere positioning

« Cantilever is mounted on nano-positioning stage and can be precisely
positioned next to the trap

« Stage allows cantilever to be swept ~100 um in all 3 DOF at >10 Hz
« Microsphere position can also be controlled optically using the AOD

Schematic of nano-positioning stage: Side view of microsphere near attractor:

Nano-positioning stage

Attractor
cantilever Microsphere

N ¥

50 mm

Cantilever

Coarse position stage
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Electrostatic shielding

« Trap is surrounded by shielding cones to attenuate stray electric fields
« Stray fields can cause large electric field gradients near attractor tip

« Even for neutral microspheres, stray fields will polarize microspheres
which can couple to residual field gradients

Each cone can be

Cross section of lens holders biased individually _
and shielding cones: Image of trapped microsphere:

Focusing lenses
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Differential Casimir force [N]

Casimir backgrounds

« Even for neutral, unpolarized microspheres, electromagnetic backgrounds
will still be present

 |f unscreened, differential Casimir force between Au and Si/Cu can present
dominant background

« Coating attractor with Au shield layer (0.5 to 3 um thick) can sufficiently
suppress this background

1o Calculation of differential Casimir force: Schematic of shielding layer:
10 | — $=0.2 um, AuU/Si |7

-14 :
10 —  $=2.0 um, Au/Si | A
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Patch potentials

» Deposited Au films typically have potential variations ~10—100 mV over 10
nm—1 um surface regions

« Such “patch potentials” have been studied extensively in previous work

« Have estimated background using recent patch measurements of Au films

Calculation of force due to patch potentials:

10" ——— —

[ Current force
-19 f

1077 F sensitivity sy -

Topography and surface potential for
sputtered Au film:
0 ‘ ‘q}w ; .

1020 |
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Force due to patch potentials, F, [N]

-50 50 mv
Garrett et al., J. Phys. Condens. Matter 27, 214012 (2015) Face-to-face separation, s [um]
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Expected sensitivity

function of length scale, A
Assumptions:

Face-to-face separation, s:
0.2 um (dashed) or 2 um (solid)

Force sensitivity:

o =5x 10" N Hz 2 (blue)

O = pressure limited at 10°
mbar (red)

108 s integration time

Backgrounds:

At or below noise level, Au shield
thick enough to suppress Casimir
background

Substantial improvement over
existing limits may be possible at
0.5-40 pm

D. Moore, Stanford

Strength parameter,

Have calculated expected sensitivity to Yukawa strength parameter, q, as a

Projected sensitivity to non-Newtonian forces:

Demonstrated
force sensitivity |

102 F TS ;; """""""" |
_ Projected force = s S
10° _sensitivity
10™ 10° 10" 10°
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Chameleons

Constraints on power law chameleons:

* Recent theoretical interest in light

1 H 1 QU 10
scalars with screened interactions at 510
short distances = o9 Q Bounce
g 10°)

« In the “chameleon” mechanism, the 8 48

effective mass becomes large in high S

density regions g 10°

- - m ...................................................................................................................................

- Microspheres in our geometry are not &

substantially screened for  <10% [ ,,,,,,,,,,,,,,,,,,,,,,,,,,

« Can search for new forces below dark ~ ,b—— .........................................................................................
energy length scale A ~ 80 pm

« Allows sensitivity to larger couplings, SR N A S

B, than torsion pendula Adapted from:

arXiv:1503.03317 .

« Could substantially improve on
current constraints from neutron and

atom interferometry

Projec|ted force s%?nsitivity

2 3 4
Power law index of potential, n
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Summary

» Levitated microspheres can enable novel searches for new forces at
micron distances

« Ability to control charge state and optical potential allows precise
measurement and mitigation of electrostatic backgrounds

« Have demonstrated force sensitivity <1018 N, but substantial improvement
IS possible

« Developing attractors necessary to search for non-Newtonian forces

« May be able to probe significant amounts of unexplored parameter space
for new forces coupling to mass at length scales from 0.5 — 40 um

X
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