

IGR J17361-4441: a possible planetary tidal disruption event unveiled in NGC 6388

In collaboration with: A. A. Nucita, G. Lodato, L. Manni, F. De Paolis, J. Farihi, G. De Cesare and A. Segreto

IGR J17361-4441: a new INTEGRAL source in NGC 6388

2011 August 11th (Gibaud+11): a new hard X-ray source was discovered by INTEGRAL/IBIS with F_{20-40keV}=7±1 mCrab

• Swift/XRT follow-up (Wijnands+11): refined position consistent with the centre of the globular cluster NGC 6388, very flat X-ray spectrum with $\Gamma \approx 0.6$ -1.0, luminosity peak of L_X =6-9x10³⁵ erg/s

Is an Intermediate Mass Black Hole responsible for this emission?

Multi-wavelength follow-up

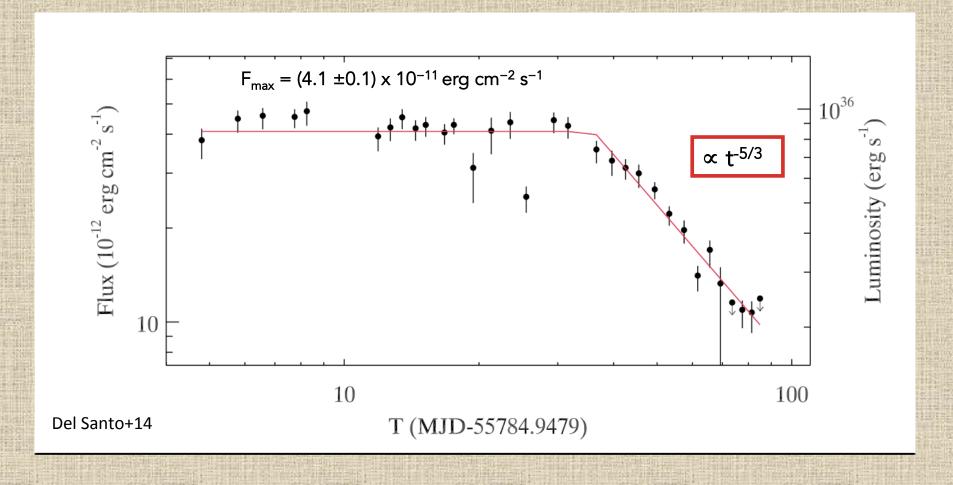
ATCA ToO (Ferrigno+11; Bozzo+11): lack of radio emission, rms noise level of 19.0 μ Jy @ 9 GHz (4x10²⁸ erg s⁻¹ @8.5 GHz)

Chandra revealed that the position was not consistent with the gravitational centre of the cluster (Pooley+11).

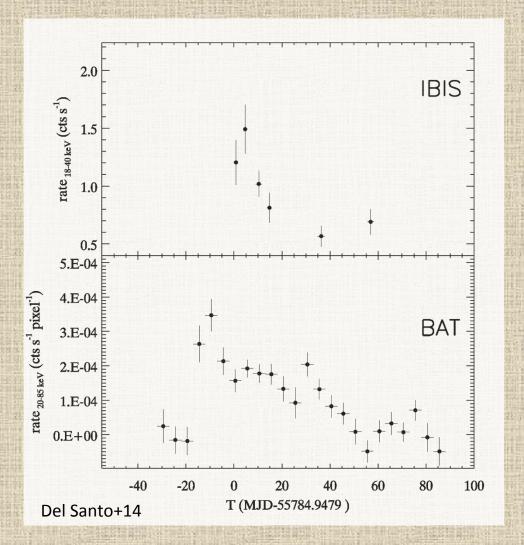
A possible Very Faint X-ray transient

- ✓ X-ray sources in Globular Clusters are most-likely Low Mass
 X-ray Binaries with Neutron Star
- ✓ X-ray binaries with luminosity peak as L_X=10³⁴-10³⁶ erg/s
 are Very Faint X-ray Transients (VFXT)

IGR J17361-4441 was proposed being a LMXB with NS accreting at very low rate (Wijnands+11)


Doubts...

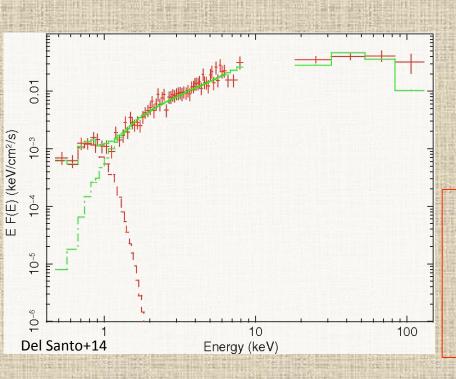
- ✓ Flat X-ray spectra are unusual in LMXB-NS which show X-ray spectra with indices of 1.6-2.2.
- ✓ No type-I bursts nor pulsation have been detected in IGR.
- ✓ NS transients show (usually) quiescent luminosities of about 10^{32-33} erg s⁻¹ (Rea+11) higher than the upper limit of IGR (few 10^{31} erg s⁻¹)

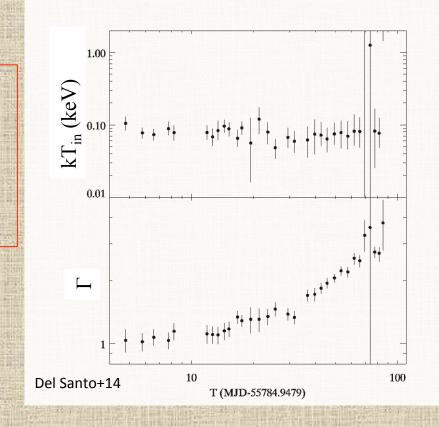

Moreover the BH binary nature seemed unlikely

- ✓ Based on the fundamental plane (Merloni+03; Kording+06), the radio flux upper limit would imply a BH mass lower than solar (Ferrigno+11)
- ✓ Only a few stellar-mass black hole survive in GC since most of them are likely ejected through dynamical interactions.
- ✓ VFXT with BH show X-ray spectra with $\Gamma \approx 1.5-2$ (Armas-Padilla+13)

The XRT luminosity evolution

The light curve can be well represented by a plateau (t_k =36±1 d) plus a $\propto t^{-5/3}$ law (\approx 50 days).




BAT data indicated that the event was started at least 14 days before the discovery.

Total duration ≈ 100 days

Spectral behaviour

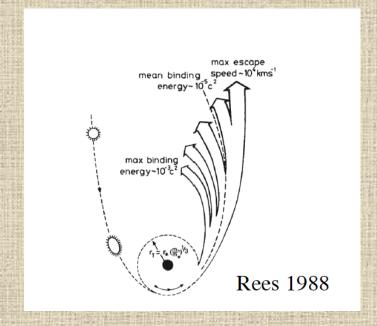
XRT spectra fit with disc black-body+power-law Γ increasing kT_{in} almost constant ≈ 0.08 keV

XRT+IBIS spectrum in the plateau is well fit by disc black-body + cutoff power-law (\approx 40 keV)
A flat slope: $\Gamma = 0.8 \pm 0.1$

Hints for a Tidal Disruption Event?

There are two empirical evidences that point in this direction:

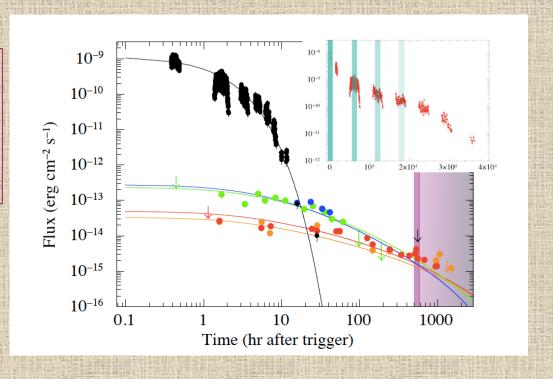
- 1. The XRT light curve declines as $\propto t^{-5/3}$
- 2. Thermal emission component does not evolve significantly with time


Which kind of object was captured and tidally disrupted, and by what?

Tidal Disruption Events (TDE)

Star tidally disrupted by a SMBH

Tidal field of the BH exceeds the star's self-gravity


Half of the original stellar debris falls back onto the hole, half escapes on a hyperbolic orbit

IGR J17361-4441 lies in a Galactic Globular Cluster at 13.2 kpc

Tidal Disruption of minor body

While in the Solar System comets fall directly onto our Sun, if the star is a compact object, the minor body can be tidally disrupted.

'Christmas'-ray burst (GRB 101225A10) can be explained by a tidal disruption event of a minor body around a Galactic isolated neutron star (Campana+11).

The presence of heavy elements in the 4% of White Dwarfs atmospheres originates from disrupted rocky bodies such as asteroids or minor planets.

Ex.: White Dwarf G29-38 (Gänsicke+06)

TDE scenario for IGR J1736

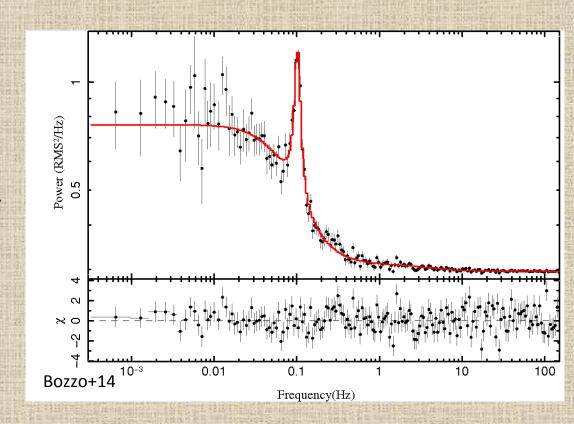
- $L_{Bol} \approx 3.5 \times 10^{37} \text{ erg s}^{-1}$
- $M_{acc} = 3.4 \times 10^{23} \ \epsilon^{-1} g$
- Mass of the disrupted object $M_{mb} \approx 7 \times 10^{23} \ \epsilon^{-1} \ g$
- Fall-back time $t_{min} \approx 68$ days

$$t_{\min} = \frac{C^3 \pi}{2^{1/2}} \left(\frac{M}{M_{\text{mb}}}\right)^{1/2} \sqrt{\frac{3}{4\pi G \rho}}$$
$$\approx 1.4 \times 10^4 \left(\frac{C}{2}\right)^3 \left(\frac{M}{M_{\text{Ch}}}\right)^{1/2} \epsilon^{1/2} d,$$

 $\approx 1.4 \times 10^4 \left(\frac{C}{2}\right)^3 \left(\frac{M}{M_{\odot}}\right)^{1/2} \epsilon^{1/2} d$, the min(obs) = the min(theory) (Rees et al. 1998; Lodato et al. 2009)

- $\varepsilon \approx 3.5 \times 10^{-4}$ (M_{Ch}/M) accretion efficiency of a WD close to the Chandrasekhar limit
- $M_{mb} \approx 1.9 \times 10^{27} \text{ M/M}_{Ch} \text{ g}$ (Terrestrial-icy planetary regime)

The planetary TDE rate


$$\dot{N}_{
m TE} \simeq rac{4\pi r_{
m c}^3}{3} N_{
m FFP} N_{
m WD} \Sigma \sigma_{
m pl}, \ _{
m Soker+01; \, Binney\&Tremaine08}$$

- 1. WD density in GC is estimated in the range 10^4 – 10^5 pc⁻³ (Raskin+09, Ivanova+06)
- 2. Free Floating Planets density could exceed 10⁶ pc⁻³ (Soker+01) up to 10⁸ pc⁻³ (Fregeau+02, Hurley&Shara 2002, Ida+03)
- 3. The NGC 6388 core radius is 0.5 pc (Lanzoni+07) and the star velocity dispersion $\sigma_{\text{star}} = 13 \text{ km/s (Lanzoni+13)}$
- 4. $\sigma_{\rm pl} \approx 2.5 \ \sigma_{\rm star}$
- 5. cross section of the interaction $\Sigma = \pi r_t^2 \left(1 + \frac{2GM}{|\sigma_{pl}^2 r_t|} \right)$

$$\dot{N}_{\rm TE} \simeq 10^{-6} - 10^{-4} \, {\rm yr}^{-1}$$

XMM-Newton Power Density Spectrum

- Found a 100 mHz quasiperiodic oscillation in the X-ray emission (0.6-12 keV)
- Confirmed the soft thermal component (kT_{in} ≈ 0.08 keV)

Similar to Dwarf Novae Oscillations (DNOs)

Motion of material close to the inner boundary of the accretion disk surrounding a WD

Conclusion

- ✓ Based onto two empirical evidence, we proposed a TDE nature for IGR J1736
- ✓ The disrupted object mass is of the order of a third Earth mass, while the compact object is a WD to the Ch. limit
- ✓ In the optimistic case the rate of such TDEs is 10-4 yr-1
- ✓ Considering 150 globular clusters into the Galaxy, the total rate of this kind of events is one every 20 years
- ✓ This is comparable with the lifetime of INTEGRAL and Swift

Thanks for your attention