Updated Constraints and Forecasts on Primordial Tensor Modes

Giovanni Cabass

Physics Department and INFN, Università di Roma "La Sapienza"

In collaboration with:

L. Pagano, L. Salvati, M. Gerbino, E. Giusarma, A. Melchiorri (arXiv: 1511.05146)

Outline

- Introduction
- Primordial gravitational waves observable effects
 - CMB B-mode polarization
 - contribution to radiation energy density
- Constraints on primordial tensor spectrum, with and without BK14 data
- Forecasts
 - COrE-like mission
 - COrE + AdvLIGO

Introduction

CMB as probe of primordial perturbations

Observable Signatures of Primordial Tensor Modes

CMB polarization

We expect the CMB to become polarized via Thomson scattering: $\frac{d\sigma}{d\Omega} \propto |\hat{\epsilon}\cdot\hat{\epsilon}'|$

E- and B-mode polarization pattern

E-mode polarization around cold spot

E-mode polarization around hot spot

from *E*-mode to *B*-mode polarization

- \blacktriangleright E-mode pattern: invariant for $\hat{\boldsymbol{n}} \rightarrow -\hat{\boldsymbol{n}}$;
- ightharpoonup B-mode pattern: odd under $\hat{m{n}}
 ightarrow -\hat{m{n}}$.

Tensor perturbations and *B***-modes**

Quantum fluctuations of spatial metric $h_{ij} \to \text{two-point function } P_{\mathsf{t}}(k)$:

$$h_{ij}(x) = \int \frac{\mathrm{d}\boldsymbol{k}}{(2\pi)^{3/2}} \sum_{p=+,\times} \epsilon_{ij}^{p}(\boldsymbol{k}) h_{\boldsymbol{k}}^{p}(t) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} \longrightarrow \langle h_{\boldsymbol{k}}^{p} h_{\boldsymbol{k}'}^{q} \rangle' = P_{\mathsf{t}}(k)$$

Need quadrupole anisotropy to polarize CMB photons. Both scalar and tensor modes source a quadrupole anisotropy \rightarrow

$$C_{\ell}^{XY} = \int d\log k \, \Delta_{s,\ell}^{X}(k) \Delta_{s,\ell}^{Y}(k) P_{s}(k) + \int d\log k \, \Delta_{t,\ell}^{X}(k) \Delta_{t,\ell}^{Y}(k) P_{t}(k)$$

- \blacktriangleright tensor perturbations $h_{\mathbf{k}}^p$ generate both E-modes and no B-modes.
- \blacktriangleright scalar perturbations ζ_k generate E-modes, but no B-modes: transfer functions $\Delta_{s,\ell}^B$ are 0;

angular power spectra of B-mode polarization C_{ℓ}^{BB} allow to probe the primordial tensor spectrum

GW contribution to radiation energy density

Pritchard and Kamionkowski, 2004

- numerical (no anisotropic stress)

- ----- WKB approximation
- numerical (with anisotropic stress)

tensor modes re-enter the horizon → they begin to oscillate

propagate as massless modes \rightarrow contribute to $\rho_{\rm rad}$

$$\frac{1}{1+\frac{7}{4}} \left(\frac{4}{3}\right)^{\frac{4}{3}} N_{cc}$$

$$\Omega_{\text{rad}} = \Omega_{\gamma} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{\frac{4}{3}} N_{\text{eff}} \right]$$

Maggiore, 1999

$$N_{\rm eff}^{\rm GW} = \frac{h_0^2}{5.6\times 10^{-6}} \int_{f_{IR}}^{f_{UV}} \mathrm{d}\log f\,\Omega_{\rm GW}(f) \qquad \text{with} \qquad \Omega_{\rm GW}(f) = \frac{1}{\rho_c} \frac{\rho_{\rm GW}}{\mathrm{d}\log f}$$

$$\Omega_{\text{GW}}(f) = \frac{1}{\rho_c} \frac{\rho_{\text{GW}}}{\text{d} \log f}$$

IR and UV cutoffs, primordial tensor spectrum

The integral for $N_{\text{eff}}^{\text{GW}}$ does not extend on all frequencies:

- ➤ at a given redshift, there is a *IR* cutoff equal to the horizon size at that redshift. Energy of superhorizon modes is zero (they are frozen out);
- The UV cutoff is more arbitrary. In our analysis we take f_{UV} to be the horizon size at the end of inflation ($k_{UV} \approx 2 \times 10^{23} \, \text{Mpc}^{-1}$).

$$\Omega_{\text{GW}}(f) = \frac{\Delta_{\text{t}}^{2}(f)}{24z_{\text{eq}}}$$
, with $f/\text{Hz} = 1.6 \times 10^{-15} k/\text{Mpc}^{-1}$

Ungarelli et al., 2005 Watanabe and Komatsu, 2006

for
$$\Delta_{\rm t}^2(k) = rA_{\rm s} \left(\frac{k}{k_{\star}}\right)^{n_{\rm t}}$$

$$N_{\rm eff}^{\rm GW} \approx 3 \times 10^{-6} \times \frac{rA_{\rm s}}{n_{\rm t}} \left[\left(\frac{f}{f_{\star}}\right)^{n_{\rm t}}\right]_{f_{IR}}^{f_{UV}}$$

Constraints at different frequencies

(see also Meerburg et al., 2015)

- $N_{\rm eff}^{\rm BBN}$: contribution of GWs to $\rho_{\rm rad}$ at BBN. A large $N_{\rm eff}^{\rm BBN}$ will result in an overproduction of 4 He. The IR cutoff is the horizon size at BBN;
- \triangleright $N_{\rm eff}^{\rm CMB}$: contribution of GWs to $\rho_{\rm rad}$ at decoupling. It affects CMB anisotropies. The IR cutoff is the horizon size at decoupling.

Multi-Wavelength Constraints from Current Data

Constraints from (not so) current data

95% CL constraints

Dataset	r	$n_{ m t}$
$\overline{Planck + BKP}$	< 0.089	$1.7_{-2.0}^{+2.2}$
Planck + BKP + FIRAS	< 0.098	$0.65^{+0.86}_{-1.1}$
Planck + BKP + pulsar	< 0.088	$0.20^{+0.69}_{-0.96}$
Planck + BKP + LIGO-Virgo	< 0.085	$0.04^{+0.61}_{-0.85}$
$Planck + BKP$, with N_{eff}^{GW}	< 0.082	$-0.05^{+0.58}_{-0.87}$
$Planck + BKP + EXT$, with N_{eff}^{GW}	< 0.080	$-0.05^{+0.57}_{-0.80}$
$\overline{Planck + BKP + aLIGO}$	< 0.078	$-0.09^{+0.54}_{-0.78}$

- $ightharpoonup |k_{\star}| = 0.01$: need blue $n_{\rm t}$ for low tensor power at small ℓ ;
- ightharpoonup additional datasets: cut $n_{\rm t}$ exponentially $\Rightarrow r$ is lowered;
- \blacktriangleright adding N_{GW} : tighter constraints than external datasets.

AdvLIGO: 10× improvement of LIGO

still no detection from interferometers but stronger bounds than CMB + N_{eff}^{GW}

BAO +

Deuterium

Constraints from current data

95% CL constraints

Dataset	r	$n_{ m t}$
Planck + BK14	< 0.067	$1.8_{-2.1}^{+2.0}$
Planck + BK14 + LIGO-Virgo	< 0.067	$0.00^{+0.68}_{-0.91}$
$Planck + BK14$, with N_{eff}^{GW}	< 0.061	$-0.12^{+0.65}_{-0.84}$
$Planck + BK14 + EXT$, with N_{eff}^{GW}	< 0.061	$-0.10^{+0.63}_{-0.88}$
Planck + BK14 + aLIGO	< 0.060	$-0.16^{+0.63}_{-0.88}$

smaller error bars from BK14

 \Rightarrow tighter constraints on r

loss of sensitivity to $n_{\rm t}$

 \Rightarrow constraints on n_t do not improve a lot

Forecasts: CMB and Direct Detection Experiments

Forecasts for COrE-like mission

COrE specifics (COrE Collab., 2011)

channel	FWHM	$w^{-1/2} - T$	$w^{-1/2} - Q, U$
(GHz)	(arcmin)	$(\mu \mathbf{K} \cdot \mathbf{arcmin})$	$(\mu \mathbf{K} \cdot \mathbf{arcmin})$
105	10	2.68	4.63
135	7.8	2.63	4.55
165	6.4	2.67	4.61
195	5.4	2.63	4.54
225	4.7	2.64	4.57

additional frequency channels (from 45 GHz to 795 GHz): used for foreground removal

Simulated likelihood (for simplicity consider only B-mode spectra) \rightarrow

$$L = \sum_{\ell} (2\ell + 1) \left[-1 + \frac{\hat{C}_{\ell}^{\text{tens}} + \hat{C}_{\ell}^{\text{lens}} + N_{\ell}}{C_{\ell}^{\text{tens}} + C_{\ell}^{\text{lens}} + N_{\ell}} + \log \left(\frac{C_{\ell}^{\text{tens}} + C_{\ell}^{\text{lens}} + N_{\ell}}{\hat{C}_{\ell}^{\text{tens}} + \hat{C}_{\ell}^{\text{lens}} + N_{\ell}} \right) \right]$$

- \bullet \hat{C}_{ℓ} : evaluated for cosmological parameters that describe the (assumed) true universe
- assuming a Gaussian beam, N_{ℓ} is

$$N_{\ell} = \left(\sum_{i} w_{(i)} e^{-\sigma_{(i)}^{2} \ell(\ell+1)}\right)^{-1}$$

Delensing

For an experiment with a noise level of order $\sim 1\,\mu\text{K}\cdot\text{arcmin}$ post component separation, one can delens up to 10% (Errard et. al, 2015): COrE can do it.

Creminelli et al., 2015

Results of COrE forecasts

95% CL constraints

	r	$n_{ m t}$
fiducial	0.05	-r/8 = -0.00625
COrE	0.0500 ± 0.0012	$-0.0072^{+0.1108}_{-0.1143}$
COrE, delens.	0.05000 ± 0.00066	$-0.0023^{+0.0632}_{-0.0640}$
fiducial	0.01	-r/8 = -0.00125
COrE	0.01001 ± 0.00061	$-0.0024^{+0.1597}_{-0.1637}$
COrE, delens.	0.01000 ± 0.00024	$-0.0019^{+0.1074}_{-0.1088}$

- \triangleright 10% delensing: break degeneracy between r and n_t ;
- r measured with a relative uncertainty of order 5×10^{-2} ;
- \blacktriangleright even with delensing, COrE cannot probe $n_{\rm t}=-r/8$.

COrE + AdvLIGO forecast

	r	$n_{ m t}$
fiducial	0.045	0.35
P + BKP + aLIGO	< 0.095	0.354 ± 0.020 -
COrE	0.0450 ± 0.0011	0.348 ± 0.061
COrE, delens.	0.04500 ± 0.00060	0.350 ± 0.029
COrE + aLIGO	0.0450 ± 0.0010	0.3483 ± 0.0053

AdvLIGO will see Ω_{GW} , but *Planck* will not see r

 $\sim 10x$ improvement in $\sigma_{n_{\rm t}}$ important to combine CMB with high-frequency observables

Conclusions

- \triangleright constraints from small-scale probes forbid very blue n_t , resulting in tighter bounds on r;
- \triangleright including contribution of GWs to $N_{\rm eff}$ gives the strongest bounds, comparable to AdvLIGO;
- \blacktriangleright new BK14 data improve constraints on r, but not on n_t ;
- ► forecasts for COrE-like mission 5 channels (assuming that foregrounds are subtracted). Fiducials with $n_t = -r/8$:
 - $-\sigma_r/r\approx 10^{-2}$;
 - COrE will not be able to test $n_t = -r/8$ with high accuracy;
- > combining CMB with small-scale probes will be necessary.

Backup slides

Linear sampling and priors on r

NEC and blue tilt

Consistency relation between $\epsilon_H \equiv -\dot{H}/H^2$ and $n_{\rm t} \rightarrow$

$$n_{\rm t} = -2\epsilon_H$$

EFT for π in decoupling limit (where the mixing between gravity and inflaton is negligible):

$$\mathcal{L}_{\pi} = -M_{\mathsf{P}}^{2} \dot{H} \underbrace{\left(\dot{\pi}^{2} - \frac{(\partial_{i}\pi)^{2}}{a^{2}}\right)}_{\text{coefficient of}} + 2M_{2}^{4} \left(\dot{\pi}^{2} + \dot{\pi}^{3} - \dot{\pi} \frac{(\partial_{i}\pi)^{2}}{a^{2}}\right) + \dots,$$

$$\dot{H} \text{ must be smaller than zero}$$

$$(\partial_{i}\pi)^{2} \text{ is } M_{\mathsf{P}}^{2} \dot{H}$$

$$\text{to avoid instabilities}$$

 \rightarrow FLRW metric: \dot{H} < 0 is the Null Energy Condition, i.e. $T_{\mu\nu}k^{\mu}k^{\nu}$ > 0 for all lightlike k^{μ} .

Suitable choice of higher derivative operators \rightarrow can have $\dot{H} > 0$ while maintaining stability (Creminelli et al., 2006).

Number of e-folds of inflation

Number N_{\star} of e-folds of inflation after k_{\star} has left the horizon

$$N_{\star} \equiv \log \frac{a_{\text{end}}}{a_{\star}} = -\log \frac{k_{\star}}{H_0} + \log \frac{H_{\star}}{H_0} + \log \frac{a_{\text{end}}}{a_{\text{reh}}} + \log \frac{a_{\text{reh}}}{a_0}$$

where t_{end} marks the transition to radiation dominance.

Standard assumption: reheating is a period of matter domination. Then \rightarrow

$$\frac{k_{\text{end}}}{\text{Mpc}^{-1}} = T_{\text{CMB}} \exp \left[\log \sqrt[3]{\beta} - \log \sqrt{3} + \log \sqrt[3]{\alpha^2} + \log \sqrt[3]{\frac{\pi^2}{45}} g_*(T_{\text{CMB}}) \right]$$

- $E_{\rm end} = (\alpha M_{\rm P})^4$: energy density at the end of inflation;
- $T_{\text{reh}} = \beta M_P$: temperature at beginning of radiation dominance.

Assuming to have instant reheating $(\alpha = \beta)$ at the GUT scale $E_{\rm end} \approx 10^{16} \, {\rm GeV}$

$$k_{\rm end} \approx 2 \times 10^{23} \, \rm Mpc^{-1}$$