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Low-mass X-ray binary transients

NS cooling
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1%-100% Ly,

Outburst Bright but short

Both states quite
well studied!

How about the
Intermediate regime?

< 0.01% Ly

Quiescence Very dim but

very long




Outburst

Sub-
Eddington
systems

Quiescence

1%-100% Ly,

0.01%-1% Ly

< 0.01% Ly

Bright but short

Difficult
to study!

Dim and
very short

Very dim but
very long



Final decay phase of bright transients

RXTE cts/
1000 2000
———

|

O

| | | I | | I

0 100 200 300 400 500 600
Days since Jan 19 2006

Disadvantage: it might only last for days
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Muno et al. 2005

Very-faint X-ray transients

« Never become brighter than 10%°erg s
— Difficult to find and typically only have low gquality data
— Qutbursts tend to be brief so difficult to obtain data
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(Quasi-)stable subluminous systems

 Several NS systems are persistently subluminous

» Several NS transients are quasi-stable at very
low luminosities

e This allows for more detailed studies
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1%-10% Ly

< 0.01% Ly

counts sec™! keV!

E F. (keV/cm?s)

Note: 1 type out of 3 possibilities
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Photons cm—= s~ keV-!

Studying the X-ray spectra

« Usually the data have low quality
— Very few photons

 Only simple models can be fitted to the spectra
— Typically power-law model (E*, I" = photon index)

» Sometimes high(er) quality data are obtained!
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Evolution of the photon Iindex
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Neutron star becomes visible
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NSs at extremely low accretion rates

« S0 what at lower (< 103 erg s1) luminosities?
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* Three options

— Accretion totally switches off: “true” quiescence
 Spectrum dominated by soft component
 Cooling studies of accretion-heated neutron stars



NSs at extremely low accretion rates

 True quiescence = no accretion onto the neutron star
« Cooling NS studies _
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* Three options

— Accretion totally switches off: “true” quiescence
 Spectrum dominated by soft component
 Cooling studies of accretion-heated neutron stars

— Low-level accretion continues
 Spectra very similar to those of the sub-Eddington systems!
 Soft component with very hard power-law (I" ~1-1.5)
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e |Intimate connection between the soft and the
hard power-law components

— Roughly equal flux (0.5-10 keV) in both components
over a large luminosity range

- By combining quiescent data with % & :
data from sub-Eddington systems 7« | I

« L, =10%t010%ergs? fal
— Likely soft and hard components
originate from the same process
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 Very low level accretion onto NS!
 Exact origin of the power law?
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» Boundary layer accretion?
— Just a toy model idea! - Cackett et al. 2010
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Boundary layer accretion

Boundary layer
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Boundary layer at high accretion
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1%-10% Ly,

0.01%-19% Ly

< 0.01% Ly,

counts sec™! keV!
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1%-10% Ly

< 0.01% Ly,

All accretion onto NS

counts sec™! keV!

E F. (keV/cm?s)
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* Three options

— Accretion totally switches off: “true” quiescence
 Spectrum dominated by soft component
 Cooling studies of accretion-heated neutron stars

— Low-level accretion continues
 Spectra very similar to those of the sub-Eddington systems!
 Soft component with very hard power-law (I" ~1-1.5)

— Magnetic field effects state?
» Power-law dominated spectrum, very hard

* Connection with the ‘transitional ms pulsars’?



NSs at extremely low accretion rates

« Weird power-law dominated state; connection with
transitional ms pulsars?
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a magnetic field?

— Magnetic accretion?
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Transitional millisecond pulsars

« Neutron star binaries (4 known) that switch between a

millisecond radio pulsar phase and an accreting phase

— Similar hard spectra and luminosities as very hard quiescent systems
— Magnetic accretion? Propeller regime?
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Mode switching at low luminosity
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Malin uncertainties

« Unclear if those hard quiescent spectra are causes by
the same mechanism as the transitional system spectra
— Very low quality data for the quiescent systems
— Typically much farther away than the transitional systems

 One has to worry (a lot) about selection effects

At low accretion rate the accretion is not through a
disk but through a radial/quasi-spherical, rotating
radiatively inefficient inflow

— Unclear how magnetic accretion happens in such cases
« Unclear how accretion happens even in absence of a magnetic field

— What causes the mode switching?



Final model of the spectral evolution

» Power-law comes from (up to three) different
physical mechanisms

I—X
LX LX LX
> LX
Energy Energy Energy
Decreasing luminosity
1036 erg st 10%% erg st 10%%erg st

Wijnands et al. 2015

Cooling

A\

Energy

Accreting

|

Energy

B field stuff

\

Energy



Conclusions

 Studying low accretion rates is very important

— Difficult to study and get high quality data
« But making progress! New types of NS studies can be done now!
— Neutron star is a very important player

— The hard, power-law component is also due to accretion
onto the surface of the neutron star!

« Boundary layer accretion?

« Connection with very low accretion rates

— Propeller accretion?
 Neutron star magnetic field could become an important player

— Boundary layer accretion?
 Neutron star has no magnetic field?

— Cooling neutron star if accretion has fully halted
Lot of uncertainties in the data and models






