Sub-Eddington accreting neutron stars

Low-mass X-ray binary transients

Outburst

Bright but short

Both states quite well studied!

How about the intermediate regime?

Very dim but very long

Quiescence

Outburst

1%-100% L_{Edd}

Bright but short

Sub-Eddington systems

Difficult to study!

Dim and very short

Quiescence

Very dim but very long

Final decay phase of bright transients

Disadvantage: it might only last for days

Very-faint X-ray transients

- Never become brighter than 10^{36} erg s⁻¹
 - Difficult to find and typically only have low quality data
 - Outbursts tend to be brief so difficult to obtain data

(Quasi-)stable subluminous systems

- Several NS systems are persistently subluminous
- Several NS transients are quasi-stable at very low luminosities
- This allows for more detailed studies

Studying the X-ray spectra

- Usually the data have low quality
 - Very few photons
- Only simple models can be fitted to the spectra
 - Typically power-law model ($E^{-\Gamma}$, Γ = photon index)
- Sometimes high(er) quality data are obtained!

Evolution of the photon index

Wijnands et al. 2015

Neutron star becomes visible

NSs at extremely low accretion rates

• So what at lower ($< 10^{34} \text{ erg s}^{-1}$) luminosities?

Wijnands et al. 2015

Three options

- Accretion totally switches off: "true" quiescence
 - Spectrum dominated by soft component
 - Cooling studies of accretion-heated neutron stars
- Low-level accretion continues
 - Spectra very similar to those of the sub-Eddington systems!
 - Soft component with very hard power-law ($\Gamma \sim 1-1.5$)
- Magnetic field effects state?
 - Power-law dominated spectrum, very hard
 - Connection with the 'transitional ms pulsars'?

NSs at extremely low accretion rates

• True quiescence = no accretion onto the neutron star

Cooling NS studies

Three options

- Accretion totally switches off: "true" quiescence
 - Spectrum dominated by soft component
 - Cooling studies of accretion-heated neutron stars
- Low-level accretion continues
 - Spectra very similar to those of the sub-Eddington systems!
 - Soft component with very hard power-law ($\Gamma \sim 1-1.5$)
- Magnetic field effects state?
 - Power-law dominated spectrum, very hard
 - Connection with the 'transitional ms pulsars'?

- Intimate connection between the soft and the hard power-law components
 - Roughly equal flux (0.5-10 keV) in both components over a large luminosity range
 - By combining quiescent data with data from sub-Eddington systems
 - $L_x = 10^{32}$ to 10^{35} erg s⁻¹
 - Likely soft and hard components originate from the same process
 - Very low level accretion onto NS!
 - Exact origin of the power law?
 - Boundary layer accretion?
 - Just a toy model idea!
 - − E.g., D'Angelo et al. 2015

Boundary layer accretion

Boundary layer at high accretion rate assuming disk accretion

Quasi-spherical rotating inflow

???

Three options

- Accretion totally switches off: "true" quiescence
 - Spectrum dominated by soft component
 - Cooling studies of accretion-heated neutron stars
- Low-level accretion continues
 - Spectra very similar to those of the sub-Eddington systems!
 - Soft component with very hard power-law ($\Gamma \sim 1-1.5$)
- Magnetic field effects state?
 - Power-law dominated spectrum, very hard
 - Connection with the 'transitional ms pulsars'?

NSs at extremely low accretion rates

• Weird power-law dominated state; connection with transitional ms pulsars?

- Magnetic accretion?

Papitto et al. 2013

Transitional millisecond pulsars

- Neutron star binaries (4 known) that switch between a millisecond radio pulsar phase and an accreting phase
 - Similar hard spectra and luminosities as very hard quiescent systems
 - Magnetic accretion? Propeller regime?

Image credit: NASA

Mode switching at low luminosity

M28I Linares et al. 2014

PSR J1023+0038 Bogdanov et al. 2015

Main uncertainties

- Unclear if those hard quiescent spectra are causes by the same mechanism as the transitional system spectra
 - Very low quality data for the quiescent systems
 - Typically much farther away than the transitional systems
 - One has to worry (a lot) about selection effects
- At low accretion rate the accretion is not through a disk but through a radial/quasi-spherical, rotating radiatively inefficient inflow
 - Unclear how magnetic accretion happens in such cases
 - Unclear how accretion happens even in absence of a magnetic field
 - What causes the mode switching?

Final model of the spectral evolution

• Power-law comes from (up to three) different physical mechanisms

Conclusions

- Studying low accretion rates is very important
 - Difficult to study and get high quality data
 - But making progress! New types of NS studies can be done now!
 - Neutron star is a very important player
 - The hard, power-law component is also due to accretion onto the surface of the neutron star!
 - Boundary layer accretion?
- Connection with very low accretion rates
 - Propeller accretion?
 - Neutron star magnetic field could become an important player
 - Boundary layer accretion?
 - Neutron star has no magnetic field?
 - Cooling neutron star if accretion has fully halted
- Lot of uncertainties in the data and models