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Abstract

Due to the Chandrasekhar-Friedman-Schutz (CFS) instability, the f -mode (fundamental oscil-
lation) in a newborn neutron star is driven unstable by the emission of gravitational waves. This
star is usually the result of a core-collapse supernova explosion, but may also be the aftermath
of a binary neutron star merger, where a rapidly rotating, supramassive configuration is formed,
before its collapse to a black hole. The instability is halted by nonlinear coupling to other modes
of the star, which drain energy and saturate it. Depending on the saturation point, the generated
gravitational wave signal could be detected by the next generation gravitational wave detectors
and, thus, provide useful information about the neutron star equation of state.

1 Introduction

Inferring the equation of state of matter at supranuclear densities is proven a very hard task, both
for QCD and terrestrial experiments. If studied with the right tools, neutron stars offer a unique
probe of matter in extreme conditions. Asteroseismology, namely the study of stellar oscillations [1],
could be used to deduce the internal structure of these dense objects, with an additional help from
gravitational waves. Gravitational wave asteroseismology [2, 3] is concerned with stellar deformations
that may produce a significant gravitational wave signal. The different waveforms produced by different
models can then be used as templates, in order to look for this weak signal in the detector’s noisy
background.

During the 1970s, Chandrasekhar [4], Friedman, and Schutz [5, 6] discovered that nonradial os-
cillation modes in a rapidly rotating star are prone to a secular instability, due to the emission of
gravitational waves (CFS instability). Since the instability is suppressed by viscous effects [7], only
a few modes can indeed develop the instability in a relatively short time scale: low-multipole f - and
r-modes, which describe the fundamental and inertial oscillations of the fluid respectively, are among
the most promising sources of gravitational waves from individual stars.

The exponential growth of the unstable mode will, however, eventually be halted by nonlinear
effects. Nonlinear mode coupling, during which the unstable mode’s energy is drained by other modes
of the star, was shown to saturate the r-mode instability very efficiently, at quite low amplitudes [8–11].
This would make the associated gravitational wave signal potentially detectable with second-generation
interferometers, such as Advanced LIGO, only from sources within the local galactic group [12,13].

Hitherto, the f -mode saturation amplitude is chosen ad hoc, mainly based on upper limits obtained
by nonlinear hydrodynamic simulations (e.g. Ref. [14]). Nevertheless, the secular time scale of the
instability prevents these simulations, which remain stable only on dynamical time scales, from making
a robust estimate. A conclusive result about the saturation point of an unstable f -mode can only
come via the study of the nonlinear coupling paradigm.
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2 The Oscillation Modes—Linear Perturbation Scheme

Assuming a star which is uniformly rotating with an angular velocity Ω, the fluid equations, in the
frame rotating with the star, are

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂v

∂t
+ (v · ∇)v + 2Ω× v +Ω× (Ω× r) = −∇p

ρ
−∇Φ, (2)

and
∇2Φ = 4πGρ. (3)

Equations (1)–(3) are the continuity, Euler, and Poisson equations, respectively, and have to be supple-
mented with an equation of state p = p(ρ, µ), where µ usually corresponds to entropy or composition.

Perturbing the system above to linear order and seeking harmonic solutions, we get an eigenvalue
equation which, accompanied with the appropriate boundary conditions, gives the eigenfrequencies ω
and the eigenfunctions ξ of the oscillation modes of the star.

3 The f-mode Instability

According to the standard multipole expansion of the power radiated in the form of gravitational
waves (GWs), by an oscillation mode with frequency ω [15],(

dE

dt

)
GW

= −
∞∑
lmin

Nl ω (ω −mΩ)2l+1 (|δDm
l |2 + |δJm

l |2
)
, (4)

where δDm
l and δJm

l are the mass and current multipole moments respectively, l and m are the
spherical harmonic indices of the mode, lmin = max(2, |m|), and Nl is a constant.

That is, the emission of gravitational radiation damps the mode, unless ω(ω −mΩ) < 0, in which
case the energy grows. The onset of the instability occurs when ω/m = Ω, namely when the pattern
speed of the mode matches the angular velocity of the star. Since ω−mΩ is the inertial-frame frequency
of the mode (ω is measured in the corotating frame), this means that a mode which is retrograde for
slow rotation can be dragged forwards by fast rotation and appear as prograde.

The instability is, however, suppressed by viscous effects [7]. Shear viscosity (SV), due to particle
scattering, and bulk viscosity (BV), due to the disturbance of β-equilibrium by the perturbation,
dominate at low and high temperatures, respectively. The instability operates in the area where

dE

dt
=

(
dE

dt

)
GW

+

(
dE

dt

)
SV

+

(
dE

dt

)
BV

> 0, (5)

with E denoting the energy of the mode. The region in the “temperature–angular velocity” plane
where this inequality is satisfied is called the mode’s instability window (Fig. 1).

4 Mode Coupling—Quadratic Perturbation Scheme

By perturbing Eqs. (1)–(3) to quadratic, instead of linear, order, mode coupling is introduced and
modes can no longer be described independently. It can be shown that modes couple in triplets,
if a resonance condition is satisfied between their frequencies; their amplitudes are then described
by [16,17]

Q̇α = γαQα + iωαHQβQγe
−i∆ωt, (6a)

Q̇β = γβQβ + iωβHQ∗
γQαe

i∆ωt, (6b)

Q̇γ = γγQγ + iωγHQαQ
∗
βe

i∆ωt, (6c)
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Figure 1: Quadrupole, octupole, and hexadecapole f -mode instability windows, for a Newtonian star
with p ∝ ρ3, M = 1.4M⊙, and R = 10 km. The angular velocity Ω, normalized to the Kepler (mass
shedding) limit, is plotted against the temperature.

where γi = (dEi/dt)/(2Ei) are their growth/damping rates, H is the triplet’s coupling coefficient, and
∆ω = ωα−ωβ −ωγ their frequency mismatch. The efficiency of the coupling depends on how close to
resonance the modes are (∆ω ≈ 0) and the value of the coupling coefficient H. Also, for saturation
to be achieved, the unstable (parent) mode (γα > 0) has to couple to two stable (daughter) modes
(γβ,γ < 0). When this happens, a parametric resonance occurs: after the parametric threshold (PT)
is crossed by the parent mode, the daughter modes start growing by draining energy from it. The
system eventually saturates if two additional conditions are met, given by [16,17]

|γβ + γγ | ≳ γα and |∆ω| ≳ |γα + γβ + γγ |. (7)

The saturation amplitude of the parent mode is

|Q sat
α |2 ≈ |QPT|2 =

γβγγ
ωβωγH2

[
1 +

(
∆ω

γβ + γγ

)2
]
. (8)

The two cases of successful and unsuccessful saturation are presented in Fig. 2.

5 Results

The saturation amplitude of the quadrupole (l = m = 2) and octupole (l = m = 3) f -modes
throughout their instability windows, for a Newtonian polytrope, is shown in Fig. 3. Its scaling
with temperature, along lines of constant angular velocity, is [18]

|QPT| ∝
{

T−1, T ≲ 109K
T 3, T ≳ 109K

for Ω = const. (9)

which is a result of the temperature dependence of the daughters’ damping rates [cf. Eq. (8)]. This
scaling justifies the higher values of the saturation amplitude near the edges of the window, where the
damping rates due to viscosity are larger.

An additional feature, noticeable in the results for the octupole f -mode, are these horizontal
bands which seem to behave differently from the “background”. These are mainly attributed to the
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Figure 2: After the parametric threshold (horizontal dashed line) is crossed by the parent, the daugh-
ters start growing by draining energy from it. Left: The three modes saturate around their equilibrium
solution (horizontal solid lines). Right: The saturation conditions (7) are not fulfilled and the triplet
diverges from its equilibrium solution.

occurrence of a very fine resonance between the parent f -mode and some daughter pair, which only
appears for a specific angular velocity of the star.

As a newborn neutron star cools down, it might enter the instability window from the right, at
which point the unstable mode will start growing. After it saturates, the star will continue to cool, until
thermal equilibrium is established. Then, it will spin down at T ∼ 109K [19], due to the emission of
gravitational waves, until it finally exits the window. The saturation amplitude is usually considered
constant during this process. However, based on Fig. 3, it might change considerably during the
neutron star evolution through the instability window.

Apart from supernova-derived neutron stars, another interesting case involves merger-derived,
supramassive neutron stars. These are products of the coalescence of a neutron star binary, which
are supported by rotation against collapse to a black hole. Should they survive for enough time, they
could develop a very strong f -mode instability [20] and, thus, produce a significant gravitational wave

Figure 3: Contour plots of the saturation amplitude for the quadrupole and octupole f -modes, versus
temperature and angular velocity (as a fraction of the Kepler limit), for a Newtonian star with p ∝ ρ3,
M = 1.4M⊙, and R = 10 km. The normalization used is Emode = |Q|2Mc2.
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Figure 4: Signal-to-noise ratio of a quadrupole f -mode, from relativistic, supramassive neutron stars
with different baryon masses and equations of state, versus the magnetic field strength (left) and the
r-mode saturation amplitude (right). Blue lines and axes correspond to Advanced LIGO and red ones
to the Einstein Telescope. The distance to the source is set to 20Mpc and the f -mode saturation
amplitude to 10−3 (here, αsat = |Q sat

α |2).

signal. According to Ref. [20], the signal could be detectable from sources at the Virgo cluster with
second-generation gravitational wave interferometers, such as Advanced LIGO, or even further with
third-generation detectors, like the Einstein Telescope (cf. Fig. 4).

The strength of the gravitational wave signal obtained from such instabilities is determined by
the saturation amplitude of the unstable mode. However, just a high absolute value of the saturation
amplitude does not imply a strong signal. In addition to the f -modes, unstable r-modes and magnetic
fields also contribute to the spin down of the star. This means that the f -mode instability also has
to compete with these mechanisms. As shown in Fig. 4, if the intensity of the magnetic field or the
r-mode saturation amplitude are too high, the f -mode signal is rendered unimportant and will not be
detected.

Finally, the superposition of unresolved gravitational wave signals from unstable f -modes through-
out the universe could be detected in the form of a stochastic background. As shown in Ref. [21], the
stochastic background from supernova-derived neutron stars could be detectable even with second-

Figure 5: Dimensionless energy density Ωgw of the stochastic gravitational wave background from
quadrupole, octupole, and hexadecapole f -modes, versus the observed frequency, for supernova-derived
(left) and merger-derived (right) neutron stars. Results are shown for different cosmic star formation
rate models. The detection limits of second- and third-generation interferometers, as well as the
stochastic background due to coalescing binary neutron stars, are also plotted.
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generation interferometers. This is presented in Fig. 5.
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