

Jets and outflows in ultraluminous X-ray sources

International Centre for Radio Astronomy Research

Roberto Soria

ICRAR-Curtin University (Perth)

Manfred Pakull, Christian Motch, Fabien Grise' (Strasbourg)
James Miller-Jones, Tom Russell, Ryan Urquhart (ICRAR-Curtin)

Content

- Introduction: radiative and kinetic power of BHs
- Observational evidence of jets and winds in ULXs
- Measuring BH power from optical/radio bubbles
- Optically thin and optically thick winds

Ultraluminous X-ray sources (ULXs)

= high-luminosity end of X-ray binary population $L_x > 1E39 \text{ erg/s}$

Total power of a BH

Radiation (directly observable in some bands)

Kinetic energy (jets & winds; not directly observable)

Radiation ——— (X-ray) photo-ionized nebulae

Jets ——— shock-ionized nebulae

(possibly) hot spots

synchrotron emission (mostly radio)

- 1. Select powerful non-nuclear BHs in nearby galaxies
- 2. Search for evidence of ionized gas around them
- 3. Use the bubbles as calorimeters for the BH power

Kinetic power measured from:

1. (Flat-spectrum) core radio emission

Very difficult to detect in ULXs

2. Direct kinematic study of bubble expansion velocity

3. Fluxes and flux ratios of diagnostic optical/IR lines $L(H\beta) \sim (3/1000) P_{jet}$ $L([FeII]1.64) \sim 0.2-0.4 L(H\beta) \sim (1/1000) P_{jet}$

4. Synchrotron radio emission from the lobes & hot spots

Kinetic power measured from:

1. (Flat-spectrum) core radio emission

→ Very difficult to detect in ULXs

M31 ULX transient

 $L_x \sim 1E39 \text{ erg/s}$

Radio flaring like in GBHs

(Middleton et al 2013)

Kinetic power measured from:

1. (Flat-spectrum) core radio emission

Very difficult to detect in ULXs

2. Direct kinematic study of bubble expansion velocity

- 3. Fluxes and flux ratios of diagnostic optical/IR lines $L(H\beta) \sim (3/1000) P_{jet}$ $L([FeII]1.64) \sim 0.2-0.4 L(H\beta) \sim (1/1000) P_{jet}$
- 4. Synchrotron radio emission from the lobes & hot spots

 $P_{jet} \sim 1E40 \text{ erg/s} > L_X$ Age ~ 300,000 yrs, v ~ 270 km/s

VLT/FORS2 spectra: slit oriented along the major axis

(Pakull, Motch, Soria & Grise', in prep)

VLT/FORS2 spectra: slit oriented along the minor axis

(Pakull, Motch, Soria & Grise', in prep)

VLT/FORS2 long-sit spectra

(Pakull, Motch, Soria & Grise', in prep)

M83 MQ1

M83 MQ1

Shock-ionized hot spots (= powerful jet) + photo-ionized core

P_{jet} ~ 1E40 erg/s

 $L_X \sim 1E38 \text{ erg/s}$

 $L_{5GHz} \sim 1E35 \text{ erg/s}$

(Soria et al 2014, Science)

HST/STIS spectrum approved for 2016

S26 in NGC7793

MQ1 in M83

Radio lobe luminosity vs jet power for a sample of AGN and radio galaxies (Cavagnolo et al 2010)

Power in relativistic electrons ~ (1/100)—(1/1000) of the total jet power

NGC 5585 X-1

 $P_{iet} \sim L_X \sim 4E39 \text{ erg/s}$

(Soria, Pakull, et al., 2016, in prep.)

Slim-disk ULX + shock-ionized bubble

NGC 5585 X-1

 $P_{jet} \sim L_X \sim 4E39 \text{ erg/s}$

(Soria, Pakull, et al., 2016, in prep.)

Slim-disk ULX + shock-ionized bubble

15" 150 pc

0.3-7 keV

NGC 300 - S9

Jet with multiple X-ray knots

5.5 GHz ATCA

HII region

X-ray, $H\alpha$ and radio detection

BH

(Soria, Urquhart & Pakull 2016)

M51

M51

Two ULXs with L_X ~ 1E39 associated with $H\alpha$ emission (Soria, Urquhart, et al in prep)

HST ACS F658N filter = $H\alpha$

ULX1

 $2" \sim 80 \text{ pc}$

M51

ULX1: evidence of an extended jet

Summary of ULX bubble studies

We use BH bubbles as calorimeters for L_X, P_{mech}

We found evidence of powerful BH winds and jets at super-critical accretion rates, $P_{mech} > 1E39 \text{ erg/s}$

We use L_{radio}/L_{bol} of a bubble to constrain $\varepsilon_e/\varepsilon_p$ = {energy in electrons} / {energy in ions}

Next challenge: find compact radio cores ($S_{9GHz} \sim \mu Jy$)

Local-Universe test of feedback & reionization models

Other evidence of outflows in ULXs

Information on outflows from X-ray spectra?

But some ULSs (occasionally) develop a hard tail (Soria & Kong 2015, MNRAS in press)

Temperature ~ (Radius)^{-1/2}

Evidence of relativistic baryonic jets in a super-Eddington ULX

Emission line at E = 4.4 keVRedshifted 6.7-keV Fe line? (v~c, i=70°)

(130 ks on XMM-Newton waiting for trigger)

Conclusions

Super-critical accretion produces strong outflows, sometimes also jets

Outflows observed in radio, optical, X-ray bands

Optical/radio bubbles = calorimeters for kinetic power

 $P_{mech} > \sim a \text{ few E39 erg/s} \sim L_X$

Wind effective τ < 1: Ultraluminous X-ray sources

Wind effective $\tau > 1$: Ultraluminous supersoft sources