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Take home message

• Proof on concept of a tool:

• Real-time cosmology can be used to 
observe different inhomogeneous models

• Focus on angular motion using multipole 
vectors

• This talk: no focus on redshift drift

Based on: Amendola, WV et al., JCAP (2013)



More insight inside the light 
cone: realtime cosmology
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Realtime cosmology: observe 
the same 10 yrs later
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Real time cosmology

• With e.g. GAIA have enough precision and 
volume

• only need some more time

• 500.000 quasars

• cross correlate maps from different times

Amendola, WV et al., JCAP (2013)



Real time cosmology

[Andrei et al. 2014]
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Amendola, WV et al., JCAP (2013)



Simulate different 
anisotropic models

Rotating universe up to 
1 Gpc, FLRW outside.
Observer at 30 Mpc 

from center.

Λ-replacing void, 
observer at 30 Mpc 

from center.
Amendola, WV et al., JCAP (2013)



• Decompose <F(θ, φ)> maps in multipoles

• Compute multipole vectors to quantify 
directions of anisotropy

• Compute inner products of different vectors: 
coordinate independent handle on 
directions.

• e.g. dipole orthogonal to quadrupole? 
Parallel?

Compare orientations of different 
multipoles: analysis of axis of 
symmetry of different models

Copi et al. (2003)

Amendola, WV et al., JCAP (2013)



Compare orientations of different 
multipoles: analysis of axis of 
symmetry of different models
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Figure 2 Probability distributions, based on 1000 mock universes, for a selection of inner
products assuming an observer who waits 1000 years between two observations each with a
resolution of 1 µas. Solid black lines denote the ⇤CDM model, dashed red the 1/r

2-rotation
model (observer at 35 Mpc from the origin), dashed-dotted blue 1/r-rotation (observer at
1 Gpc), dotted magenta solid body rotation (observer at 690 Mpc), and dashed green
the large local void model (observer at 1 Gpc). In all models except ⇤CDM and 1/r

2-
rotation, the observer sees a sky that is in disagreement with current observations (see text
for discussion). However, these configurations serve as an example with clear signals and
confirm the analytical results of table 1.

motion that is much larger than what is currently observed. Nonetheless,
because such extreme configurations afford us strong signals, they serve to
verify our analytical understanding and to identify the most easily accessible
observables.

Figure 2 shows the probability distributions for a selection of inner products
listed in table 1 for the five specific models discussed in section 5.1, and, for
reference, one inner product that has no defined signal in any of the models,
namely, observable F, v̂(2,1)hF i(✓,�) · v̂

(1,1)

hF 2i(✓,�), the inner product of the nonexistent
hF i quadrupole and the

⌦
F 2

↵
dipole. As expected, our null hypothesis, the

⇤CDM model, produces no discernible peaks in the probability distributions
for any of the inner products. Their corresponding standard deviations, shown
in table 2, likewise do not pass our “detection threshold” of � < 0.257. The
same is true also for the reference observable F, which is undefined in all five
considered models and consequently generates no signal.

18

For an extreme 
situation: 1000 
years of 
observation 
time, and high 
velocities on 
rotating models.

Amendola, WV et al., JCAP (2013)



Dipole of F vs quadrupole of F2:  
same signal for all models

ΛCDM LTB void

Solid rotation 1/r rotation

1/r2 rotation

Signal

No signal



Dipole of F vs dipole of F2:  
distinct signal for all models

ΛCDM LTB void

Solid rotation 1/r rotation

1/r2 rotation

Signal

No signal



Conclusion

• Proof on concept of a tool:

• Real-time cosmology can be used to 
observe different inhomogeneous models

• Using multipole vectors

Based on: Amendola, WV et al., JCAP (2013)


