

Relativistic speeds in large-scale jets

Robert Laing (ESO)

FRII Jets: Powerful and fast

Jet Models

- What distributions of flow velocity, field geometry and restframe emissivity are consistent with observations?
- Observe:
 - Deep, high-resolution radio images; IQU, corrected for Faraday rotation
- Assume:
 - Symmetrical, axisymmetric, stationary, relativistic flow
 - Power-law energy distribution, optically-thin synchrotron
- Parametrised model of:
 - Geometry
 - Velocity field in 3D
 - Emissivity
 - Magnetic-field component ratios
- Calculate I, Q, U; optimise

How does this work?

- Assumption of intrinsic side-to-side symmetry close to AGN
- Modelling side-to-side asymmetries
 - Total intensity alone is not enough: ratio

$$I/I_{ci} = [(1+\beta\cos\theta)/(1-\beta\cos\theta)]^{2+\alpha}$$

depends only on $\beta\cos\theta$ for isotropic rest-frame emission ...

- ... but polarized emission cannot be isotropic in rest frame
- Use both I and linear polarization, for which asymmetries depend on a different combinations of β and θ
- Aberration → we look at approaching and receding jets at different angles to the line of sight in the rest frame
- Enough information to separate β and θ if we know the field structure a priori
- ... which we don't, so need to fit
- Hence need good S/N and transverse resolution in IQU

Powerful FRII jets

- At least mildly relativistic velocities on kpc scales:
 - Depolarization asymmetry (RL, Garrington et al. 1988)
 - Continuity of sidedness from pc scales, where there is ample evidence for highly relativistic motion
 - ... very hard to decelerate powerful jets without destruction

But:

- Integrated jet/counter-jet rations $\rightarrow \beta \approx 0.6$ (Wardle & Aaron; Mullin & Hardcastle)
- Beamed inverse Compton X-rays require Γ ≈ 10 (Tavecchio et al.;Celotti et al.)
- ... as do proper motions on pc scales
- Spine/layer models?
 - $\Gamma \approx 10$ spine surrounded by $\Gamma \approx 2$ (shear?) layer

NGC6251

Transition case between FRI and FRII jets

Giant radio galaxy NGC6251 (z=0.0247;1.8 Mpc projected)

Collimated jets

Jet/counter-jet ratio is high at all distances

Fermi LAT detection:

- variable
- emission from outer main jet instead of/as well as core? (Abdo et al. 2010; Grandi et al. 2013)

Observed and model I

Transverse brightness profiles of the jets are very different: brighter jet: centrally peaked – fainter jet: flat or limb-brightened Signature of flow that is faster on-axis than at its edges

Observed and model Q/I

10

Velocity Structure

Best fit (so far)

- Geometry
 - $\theta \approx 28^{\circ}$ (upper limit $\approx 35^{\circ}$)
- Velocity
 - $\beta \approx 0.97 \ (\Gamma \approx 4)$ on-axis at large distances; well constrained
 - Marginal evidence for deceleration from β ≈ 0.99 close to AGN
 - Edge velocity \sim constant (β = 0.27)
- Magnetic field
 - Longitudinal and toroidal components comparable close to AGN; toroidal becomes dominant at larger distances

At least one powerful jet does indeed remain fast on large scales and has a spine-shear layer structure.

How does NGC6251 compare with FRI jets?

Laing & Bridle (2014)

s 5

10 radio galaxies 0.015 < z < 0.05 Low-power, FRI

M84 30 arcsec

Differences:

FRI jets:

- expand rapidly
- decelerate from $\Gamma \approx 2$ to $\Gamma \approx 1$

Similarities:

- Longitudinal → toroidal field
- Transverse velocity gradients

An example: I model

How important are intrinsic asymmetries?

From statistics of jet sidedness reversals, the mean intrinsic emissivity ratio is ≈ 1.5 at 10 kpc.

Polarization fits

Vectors

- along apparent magnetic field direction
- lengths ∝ degree of polarization

Q/I > 1apparent field transverse

Q/I < 1apparent field longitudinal

Jet velocities

Fractional magnetic field components

Toroidal

Consistency test 1:

External Faraday Rotation

19

Consistency test 2: core fraction

Core is the optically-thick base of the jet

Assume intrinsic ratio of core/extended emission is constant

Doppler beaming causes observed ratio f to be anticorrelated with θ

Summary and Next Steps

- FRI jets can be described in quantitative detail
 - Deceleration and transverse velocity gradients
 - Field evolution longitudinal to toroidal
 - Flattening spectrum and decreasing particle acceleration
- First attempt at model for a transition jet implies
 - Fast ($\Gamma \approx 4$) spine and slower shear layer on ~100 kpc scales
 - On-axis deceleration possible but not certain
- FRII and pc-scale jets are hard to study, even with the new generation of arrays, but watch this space

