Constraints on Dark Matter annihilations coming from the CMB

An update using Planck 2015 data

Vivian Poulin

LAPTh and RWTH Aachen University

Talk based on

Planck 2015 [arXiv:1502.01589] Poulin et al. [arXiv:1508.01370] (JCAP 1512 (2015) 12, 041

In collaboration with

P. Serpico (LAPTh) and J. Lesgourgues (RWTH)

Texas Symposium, Geneva december 16, 2015

RYNTHAACHER

1. The Big Picture

CMB as measured by Planck

Planck 2015 [arXiv:1502.01589]

1. The Big Picture

CMB as measured by Planck

Planck 2015 [*arXiv*:1502.01589]

TT power spectrum

DM interacts only gravitationally in the standard Cosmology => Constraints can be derived

V. Poulin - LAPTh & RWTH

About 40 papers in 10 years

Very well documented subject

a non-exhaustive sample

- X.-L. Chen and M. Kamionkowski, Phys.Rev., vol. D70, p. 043502, 2004.
- S. Kasuya and M. Kawasaki, JCAP, vol. 0702, p. 010, 2007.
- L. Zhang, X. Chen, M. Kamionkowski, Z.-g. Si, and Z. Zheng, "Phys.Rev., vol. D76, p. 061301, 2007.
- A. V. Belikov and D. Hooper, Phys.Rev., vol. D80, p. 035007, 2009.
- M. Cirelli, F. Iocco, and P. Panci, JCAP, vol. 0910, p. 009, 2009.
- G. Huetsi, A. Hektor, and M. Raidal, Astron. Astrophys., vol. 505, pp. 999–1005, 2009.
- T. R. Slatyer, N. Padmanabhan, and D. P. Finkbeiner, Phys.Rev., vol. D80, p. 043526, 2009.
- A. Natarajan and D. J. Schwarz, Phys.Rev., vol. D81, p. 123510, 2010.
- C. Evoli, M. Valdes, and A. Ferrara, PoS, vol. CRF2010, p. 036, 2010.
- S. Galli, F. Iocco, G. Bertone, and A. Melchiorri, Phys.Rev., vol. D80, p. 023505, 2009.
- G. Hutsi, J. Chluba, A. Hektor, and M. Raidal, Astron. Astrophys., vol. 535, p. A26, 2011.
- D. P. Finkbeiner, S. Galli, T. Lin, and T. R. Slatyer, Phys.Rev., vol. D85, p. 043522, 2012.
- G. Giesen, J. Lesgourgues, B. Audren, and Y. Ali-Haimoud, JCAP, vol. 1212, p. 008, 2012.
- T. R. Slatyer, Phys.Rev., vol. D87, no. 12, p. 123513, 2013.
- S. Galli, T. R. Slatyer, M. Valdes, and F. Iocco, Phys.Rev., vol. D88, p. 063502, 2013.
- L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz, and A. C. Vincent, JCAP, vol. 1307, p. 046, 2013.
- T. R. Slatyer, arXiv:1506.03812, 2015.
- T. R. Slatyer, arXiv:1506.03812, 2015.

• ...

$$\chi \longrightarrow e^{+}, \mu^{+}, \tau^{+}, W^{+}, \bar{b}...$$

$$\chi \longrightarrow e^{-}, \mu^{-}, \tau^{-}, W^{-}, b...$$

What happens to the annihilation products ?

What happens to the annihilation products?

Only e^{\pm}, γ interact with the intergalactic medium (IGM) and CMB. They can :

- i) Lose their energy through interaction with CMB and redshifting $e\gamma_{\rm CMB} \rightarrow e\gamma \qquad \gamma\gamma_{\rm CMB} \rightarrow \gamma\gamma \qquad \gamma\gamma_{\rm CMB} \rightarrow e^+e^-;$
- ii) ionize, excite or heat the IGM.

What happens to the annihilation products?

Only e^{\pm}, γ interact with the intergalactic medium (IGM) and CMB. They can :

- i) Lose their energy through interaction with CMB and redshifting $e\gamma_{\rm CMB} \rightarrow e\gamma \qquad \gamma\gamma_{\rm CMB} \rightarrow \gamma\gamma \qquad \gamma\gamma_{\rm CMB} \rightarrow e^+e^-;$
- ii) ionize, excite or heat the IGM.

Main impact of DM annihilations : modification of the recombination

V. Poulin - LAPTh & RWTH Update on DM constraints from CMB

Texas Symposium, Geneva

$$x_e \equiv \frac{n_e}{n_H}$$

 dx_e

dz

$$I_X(z) = I_{X_i}(z) + I_{X_\alpha}(z)$$
$$I_{X_i}(z) = \frac{\chi_i(z)}{n_H(z)E_i} \frac{dE}{dVdt}\Big|_{dep}$$
$$I_{X_\alpha}(z) = \frac{(1-C)\chi_\alpha(z)}{n_H(z)E_\alpha} \frac{dE}{dVdt}\Big|_{dep}$$

 $= \frac{1}{(1+z)H(z)} [R_s(z) - I_s(z) - I_X(z)]$

dep

$$x_e \equiv \frac{n_e}{n_H}$$

$$I_{X}(z) = I_{X_{i}}(z) + I_{X_{\alpha}}(z)$$

$$I_{X_{i}}(z) = \frac{\chi_{i}(z)}{n_{H}(z)E_{i}} \frac{dE}{dVdt}\Big|_{dep}$$

$$I_{X_{\alpha}}(z) = \frac{(1-C)\chi_{\alpha}(z)}{n_{H}(z)E_{\alpha}} \frac{dE}{dVdt}$$

$$\frac{dT_{\rm M}}{dz} = \frac{1}{1+z} \left[2T_{\rm M} + \gamma (T_{\rm M} - T_{\rm CMB}) + K_h \right]$$
$$K_h = -\frac{2\chi_h(z)}{H(z)3k_b n_H(z)(1+f_{He}+x_e)} \frac{dE}{dVdt} \Big|_{\rm dep}$$

V. Poulin - LAPTh & RWTH

1*s*

V. Poulin - LAPTh & RWTH

V. Poulin - LAPTh & RWTH

$$\frac{dE}{dVdt}\Big|_{\rm inj}(z) = \left(n_{\rm pairs} = \kappa \frac{n_{\rm DM}}{2}\right) \cdot \left(P_{\rm ann} = \langle \sigma_{\rm ann} v \rangle n_{\rm DM}\right) \cdot \left(E_{\rm ann} = 2m_{\rm DM}c^2\right)$$

In the smooth background :

$$\frac{dE}{dVdt}\Big|_{\text{inj,smooth}} (z) = \kappa \rho_c^2 c^2 \Omega_{\text{DM}}^2 (1+z)^6 \frac{\langle \sigma_{\text{ann}} v \rangle}{m_{\text{DM}}}$$

Texas Symposium, Geneva

In the smooth background :

$$\frac{dE}{dVdt}\bigg|_{\rm inj,smooth} (z) = \kappa \rho_c^2 c^2 \Omega_{\rm DM}^2 (1+z)^6 \frac{\langle \sigma_{\rm ann} v \rangle}{m_{\rm DM}}$$

Typical parameterization through the f(z) functions :

$$\left. \frac{dE}{dVdt} \right|_{\rm dep}(z) = f(z) \frac{dE}{dVdt} \right|_{\rm inj}(z)$$

V. Poulin - LAPTh & RWTH

In practice, for annihilations in the smooth background, it has been found that the CMB is only sensitive to

$$p_{\rm ann} \equiv f_{\rm eff} \frac{\langle \sigma_{\rm ann} v \rangle}{m_{\rm DM}}$$
 where $f_{\rm eff} \equiv f(z = 600)$.

In practice, for annihilations in the smooth background, it has been found that the CMB is only sensitive to

$$p_{\rm ann} \equiv f_{\rm eff} \frac{\langle \sigma_{\rm ann} v \rangle}{m_{\rm DM}}$$
 where $f_{\rm eff} \equiv f(z = 600)$.

Hence, we usually write

$$\frac{dE}{dVdt}\Big|_{\rm dep}(z) = p_{\rm ann} \cdot \kappa \rho_c^2 c^2 \Omega_{\rm DM}^2 (1+z)^6$$

In practice, for annihilations in the smooth background, it has been found that the CMB is only sensitive to

$$p_{\rm ann} \equiv f_{\rm eff} \frac{\langle \sigma_{\rm ann} v \rangle}{m_{\rm DM}}$$
 where $f_{\rm eff} \equiv f(z = 600)$.

Hence, we usually write

$$\frac{dE}{dVdt}\Big|_{\rm dep}(z) = p_{\rm ann} \cdot \kappa \rho_c^2 c^2 \Omega_{\rm DM}^2 (1+z)^6$$

This is the quantity really constrained by CMB power spectra analysis !

Reionization : put by hand ! Mostly due to star formation. Still to understand.

V. Poulin - LAPTh & RWTH

Reionization : put by hand ! Mostly due to star formation. Still to understand.

DM annihilations delay the recombination and enforce the free electron fraction to freeze-out (z=600) at higher values. Modification of the ionisation fraction will in turn affect the CMB power spectra through CMB scattering with free electrons.

Recombination delay implies :

- 1) Shift of the peaks
- 2) More diffusion damping

V. Poulin - LAPTh & RWTH

Modification of the ionisation fraction will in turn affect the CMB power spectra through CMB scattering with free electrons.

More scattering implies :

- 1) Suppression of power on all scales with $\ell > 200$
- 2) Regeneration of power in the polarization spectrum

V. Poulin - LAPTh & RWTH

Results obtained from annihilation in the smooth background only Is it possible to improve over it by taking into account Dark Matter halo formation?

V. Poulin - LAPTh & RWTH

As time goes by, virialized structures of DM starts to form, the so-called « DM halos ».

Universe globally homogeneous

$$\begin{split} \left. \left< \rho \right>^2 \right|_{\text{smooth}} &= \left< \rho \right>^2 \right|_{\text{smooth+halos}} \\ \left. \left< \rho^2 \right> \right|_{\text{smooth}} &\leq \left< \rho^2 \right> \right|_{\text{smooth+halos}} \end{split}$$

however

As time goes by, virialized structures of DM starts to form, the so-called « DM halos ».

Universe globally homogeneous

$$\begin{split} \left. \left. \begin{array}{l} \left\langle \rho \right\rangle^2 \right|_{\rm smooth} &= \left\langle \rho \right\rangle^2 \right|_{\rm smooth+halos} \\ \\ \left. \left\langle \rho^2 \right\rangle \right|_{\rm smooth} &\leq \left\langle \rho^2 \right\rangle \right|_{\rm smooth+halos} \end{split}$$

It is the last quantity that enters the energy injection from DM $\!$

As time goes by, virialized structures of DM starts to form, the so-called « DM halos ».

Universe globally homogeneous

$$\begin{split} \left| \langle \rho \rangle^2 \right|_{\text{smooth}} &= \left\langle \rho \right\rangle^2 |_{\text{smooth+halos}} \\ \\ \frac{|\text{however}}{|\left\langle \rho^2 \right\rangle|_{\text{smooth}}} &\leq \left\langle \rho^2 \right\rangle |_{\text{smooth+halos}} \end{split}$$

It is the last quantity that enters the energy injection from DM $\!$

=> More energy injected => Better constraints.

As time goes by, virialized structures of DM starts to form, the so-called « DM halos ».

Universe globally homogeneous

$$\begin{split} \left| \langle \rho \rangle^2 \right|_{\text{smooth}} &= \left\langle \rho \right\rangle^2 |_{\text{smooth+halos}} \\ \\ \frac{|\text{however}}{|\left\langle \rho^2 \right\rangle|_{\text{smooth}}} &\leq \left\langle \rho^2 \right\rangle |_{\text{smooth+halos}} \end{split}$$

It is the last quantity that enters the energy injection from DM $\!$

=> More energy injected => Better constraints.

But, is it very so easy ? unfortunately, no !

V. Poulin - LAPTh & RWTH

3. DM halos

Useful parameterization

$$\langle \rho^2 \rangle(z) = (1 + \mathcal{B}(z)) \langle \rho^2 \rangle$$

In the « Press-shechter formalism »

$$\mathcal{B}(z) = \frac{f_{\rm h}}{(1+z)^3} \operatorname{erfc}\left(\frac{1+z}{1+z_{\rm h}}\right)$$

V. Poulin - LAPTh & RWTH

see also [arXiv:1303.5094]

V. Poulin - LAPTh & RWTH

Impact of halos is similar to reionization

V. Poulin - LAPTh & RWTH

Impact of « standard halos » not distinguishable by the CMB

at low l : Effect well below cosmic variance.

at high l : not distinguishable from background annihilations.

[arXiv:1508.01370]

V. Poulin - LAPTh & RWTH

Update on DM constraints from CMB

18

3. DM halos

Two different treatments of star reionization will lead to different conclusions !

A more realistic treatment might indicates that impact of halos is non-negligible. Caveat : Only for « big halos », disfavored by numerical simulations.

V. Poulin - LAPTh & RWTH

In a nutshell :

In a nutshell :

From annihilations in the smooth background only, Planck

- improved bounds on $\langle \sigma v \rangle$ up to 1 order of magnitude;
- ruled out thermal relics below 10 GeV whatever annihilation channels;
- ruled out Fermi/Pamela/AMS DM candidates.

In a nutshell :

From annihilations in the smooth background only, Planck

- improved bounds on $\langle \sigma v \rangle$ up to 1 order of magnitude;
- ruled out thermal relics below 10 GeV whatever annihilation channels;
- ruled out Fermi/Pamela/AMS DM candidates.

From annihilations of standard DM models in halos :

- optical depth cannot be significantly increased by realistic halos;
- impact on CMB power spectra depends on reionization modeling :
 - too small to improve bounds for the standard parameterization;
 - non-negligible for « big halos » in a more realistic modelization of stars.

