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A metric extension of gravity based on the Tully-Fisher law is presented. It is shown that the Tully-Fisher law extends from the dynamics of globular clusters up to the dynamics of groups of galaxies and how
it can be consider as a modified version of Kepler’s third law. With it, it follows that, at second perturbation order, lensing can be fully understood and that the corresponding v PPN parameter is required to
be one. It is briefly discussed how to construct a relativistic metric extension of gravity using these observational facts and its potential for understanding the dynamics of clusters of galaxies and of the

expanding universe without the need to introduce any dark matter/energy entities for its description.

Introduction

The first solid step towards a full development of a non-relativistic theory of gravity was
made by Newton in his Philo-sophieNaturalis Principia Mathematica book (Newton,
1729). The starting point of this non-relativistic theory of gravity began with the third
law of planetary motion published by Kepler in his Harmonices Mundi book (Kepler et
al., 1619). For the known 7 planets back then, this law represents a relation between the
mass of the sun M, a planet’s particular distance to the sun r and the velocity v of a
planet about the sun: v o< (M/ 7“)1/ ? for circular orbits. The requirement of centripetal
balance during the motion of planets yields: a = —v*/r = —GM /r* where the
proportionality factor G is Newton’s gravitational constant and the minus sign appears
because of the attractive nature of gravity. The acceleration a produced by the sun on a
test planet is thus given by a force inversely proportional to its separation from it and
linearly depends on the sun’s mass. The right hand side of the previous equation is the
simplest form of the mathematical force of gravity introduced by Newton.

This elegant result was the culmination of Newton’s great battle against the ideas of
René Descartes where occult fluids permeated the cosmos producing vortices which made
the planets to follow their observed trajectories (cf. Descartes & Gaukroger, 1998). The
great success of gravity as a force of nature was well described by Mr. Coote, then
Plumian Professor of Astronomy at the Cambridge Observatories, who wrote in the
preface of the second edition of the Principia Mathematica book the following (Newton,
1729): (1) A critical paragraph to occult fluids “...and moreover of fuppofing occult
fluids, freely pervading the pores of bodies, endued with an all-performing fubrility,
and agitated with occult motions; they now run out into dreams and chimera’s, and
neglect the true conftitution of things, which certainly is not to be expected from
fallacious conjectures when we can fcarce reach it by the moft certain obfervations.
Those who fetch from hypothefes the foundation on which they build their
fpeculations, may form indeed an ingenius romance, but a romance it will ftill be”.
(2) A thought on the path to construct forces of nature when experimental ( or
observational) data is available: “...but then they affume nothing as principle, that is
not proved by phaenomena. They frame no hypothefes, nor receive them into
philofophy otherwife than as queftions whofe truth may be difputed. They proceed
therefore in a twofold method, fynthetical and analytical. From fome felect
phaenomena they deduce by analyfis the forces of nature, and the more fimple laws
of forces; and from thence by fynthefis fhew the conftitution of the reft. ”

[t seems that ideas of introducing occult entities to describe physical phenomena reoccurs
from time to time. Consider for example the hypothetical aether (an extension of
Descartes ideas denying the possibility of empty space), never detected and completely
taken away by Einstein in order to build a more profound description of the physical
world. Also, and most importantly for the modern perspectives of a modification of
gravitational laws at astrophysical scales, is the introduction of non-baryonic dark matter
and dark energy. A very interesting story also follows from the observed residuals of
Neptune’s orbit by Bouvard (1821), who concluded that: (i) the effect of the Sun’s
gravity, at such a great distance might differ from Newton’s description; or (ii) the
discrepancies might simply be observational error; or (iii) perhaps Uranus was being
pulled, or perturbed, by an as-yet undiscovered planet. Future work by Le Verrier and
Adams (Kollerstrom, 2014) lead to the discovery of Neptune (the baryonic dark matter
perturber of the motion of Uranus). When anomalies on the advance of the perihelium of
Mercury were later observed, Le Verrier postulated the existence of an hypothetical
unknown planet called Vulcan, closer to the sun than Mercury (cf. Hsu & Fine, 2005).
Vulcan was never observed and the relativistic extension made by Einstein when building
up his general theory of relativity showed that almost all of the perihelium’s advance of
Mercury came from relativistic corrections of Newton’s theory of gravity (cf. Clemence,
1947). The important lessons to learn from this story are that: (i) There could be unseen
objects that perturbe gravitational orbits and (ii) there may be cases in which gravity
needs to be extended. Note however that, in both cases, the anomalies were tiny to the
observed dynamics. As opposed to this, the current dark matter/energy hypothesis
require huge energy corrections in order to leave Einstein’s or Newton'’s field equations
untouched. As such, one may be more tempted to search for non-relativistic and
relativistic extensions of gravity:.

Non-relativistic MONDian
construction

Our recent hypothesis on the existence of non-baryonic dark matter entities or
modifications of gravity were seriously taken into account with studies of the baryonic
Tully-fisher relation (e.g. Famaey & McGaugh, 2012, and references therein) through
dynamical observations of galaxies. These astrophysical systems are not good enough in
order to choose from dark matter hypothesis or from an extension of gravitational
phenomena via a modification of Kepler’s third law. To do so, recent work has been done
in order to show that Kepler’s third law of motion requires a modification, with dark
matter components impossible to account for: (a) globular clusters dynamics

(Hernandez & Jiménez, 2012; Hernandez et al., 2013) and (b) orbits of wide open
binaries (Hernandez et al., 2012).

As such one can safely postulate that the Tully-Fisher law: v oc MY* signals the starting
point in order to extend Newton’s ideas of gravity, modifying Kepler’s third law of
motion. In the previous equation, v represents the velocity (or dispersion velocity for a
dynamically pressure supported astrophysical system) and M is the mass (could be
internal mass within a radius r) of the system. Similarly to Newton’s approach, the
requirement of centripetal balance means that the acceleration a oc v*/r at a distance r
from the configuration’s centre and so (Mendoza, 2015): @ = —GyM Y2 /r where the
constant of proportionality has been written as GGy and the minus sign has been
introduced in order to manifest the attractive nature of the gravitational force. This last
force equation can be seen as a motivation to suspect that a new theory of gravity needs
to be developed in these astrophysical systems, since its right hand side represents a
relation between the acceleration felt by a test body of mass M at a distance r. In this
sense, the proportionality constant GGy; can be seen as a new gravitational constant, with
dimensions of squared length over squared time by the square root of mass.

This means that, in the same way as GG is regarded as a fundamental constant of nature,
G should aspire to the same privileged status. However, in order to gain merits in that
direction, G\ should play an essential role in the description of relativistic phenomena on
its corresponding scales. Nonetheless, it should be noted that the construction of the
Newtonian and MONDian force equations are completely independent, since they both
depend on different and unrelated data sets. As such, the constants G and Gy can safely
be postulated as independent. Given this independence, one is allowed to think of both
as equally fundamental.

Requiring gravity to be described by the Newtonian equation at some particular scales
and behaving at some others according to the simplest MOND relation presented above,
means that the scale invariance of gravity is necessarily broken. One can postulate that
at some astrophysical scales gravity is Newtonian and requires modification at some
others. The scale is not just a “fixed” distance scale. From the experimental astronomical
evidence mentioned above it follows that the modified regime of gravity appears when
the ratio of the mass of a given astrophysical system divided by its characteristic radius is
sufficiently small as compared to the corresponding solar system value, which suggests
that the transition scale is dynamical rather a simple fixed length. A given test particle
sufficiently far away from a mass distribution is thus in this modified regime of gravity.
The approach introduced above for the description of gravitational phenomena departing
from standard Newtonian gravity can be connected with the simplest version of the
Modified Newtonian Dynamics (MOND) formula by replacing the constant Gy with a
new constant ag introduced by Milgrom (1983) with dimensions of acceleration through
the relation ap := G5;/G and so the force equation can be written as:

a=— (aOGM)l/ /r.

Since Milgrom’s acceleration constant ag &~ 1.2 x 1071 ms™ (Famaey & McGaugh,
2012) it follows that: Gy &~ 8.94 x 1071 m2s 2 kg 1/2.
[n this regard it is quite important to notice that the formulation of Milgrom (1983)
describes a modification on the dynamical sector of Newton’s second law and not on the
particular form of the gravitational force (cf. Milgrom, 2006). This is quite evident from
the initial development of the theory, in which the requirement that the squared of the
acceleration a® proportional to the Newtonian acceleration G M /r? implies flattening of
rotation curves in spiral galaxies. In this relation, the proportionality constant ay with
dimensions of acceleration, is required to be a fundamental quantity of nature. By doing
so, the Tully-Fisher law is obtained as a consequence of the proposed modification of
dynamics.
With the approach made here, it follows that the Tully-Fisher law forces the construction
of a full gravitational theory in systems where Newtonian gravity does not work. In its
simplest form, the developed theory must converge to the force equation

—(GM ao)l/ ® /r. As such, no need for modification of Newton’s second law needs to
be introduced, since only a non-scale invariant character for the gravitational law is
directly inferred from the observational data.
The introduction of Gt as a fundamental constant of gravity, rather than ap as a new
fundamental acceleration scale, sheds light onto the strategy to follow to unveil the
structure of the underlying theory. In fact, Gy points towards a modification on the
oravitational sector, whereas ay could point towards a break down or possible extensions
of special relativity (due to the existence of a universal acceleration scale, similarly as
with the speed of light), with potentially dramatic implications even in non-gravitational
systems.
If Newtonian gravity breaks at a certain scale, one can legitimately wonder whether the
relativistic structure of gravitational interactions remains valid or may require a full
reformulation. To explore these aspects one should study not only the dynamics of slow
massive particles but also the motion of relativistic particles (such as photons) in
astrophysical scenarios probing the gravitational field in this new regime. Being
conservative, one may assume that Einstein’s insights on the geometrical interpretation of
gravity remain valid in this regime. As such, it is perfectly reasonable to assume that the
Einstein Equivalence Principle remains valid, which implies that test particles satisty the
geodesic equation.
By knowing Tully-Fisher’s modification of Kepler’s third law and the geodesic equation,
then at second order perturbation, the bending of light is completely determined up to a
constant (Will, 1993). This is due to the fact that to this order of approximation the
motion of photons only depends on the non-relativistic gravitational potential and a
Parametrised Post Newtonian (PPN) parameter v = const., which measures the
proportionality between the leading (second) order corrections of the time and spatial
metric components in isotropic coordinates.
Additionally, it is natural to interpret the results by Hernandez et al. (2012) on the
failure of Kepler’s third law for wide binary systems, as a way to test a key aspect of the
mathematical structure of the underlying theory of gravity, namely whether or not
external boundary conditions influence the internal dynamics of local gravitational
systems, which is sometimes referred to as an external field effect (Famaey & McGaugh,
2012). This effect means that for example, a gravitating system in the modified
Keplerian regime embedded on an external standard Newtonian (or Keplerian) field,
would behave in a Newtonian way. Hernandez et al. (2012) studied orbits of wide binary
stars ~ 1M separated by 2 7000 AU. These bound objects are embedded in our galaxy
and are subject to its Newtonian gravity. As such, if an external field effect occurs, then
these objects would orbit each other in a standard way, following Kepler’s third law.
However, their analysis shows that a violation of Kepler’s third law occurs in these
systems. The large statistics and precise astrometry to be obtained with the GAIA probe
of the European Space Agency in the near future, should provide a strong test for the
validity of Kepler’s third law at scales yet to be explored. Furthermore, lensing
observations strongly support the validity of the geodesic equation, implying that the
effects of external gravitational fields can be removed by a suitable choice of local
coordinates (a freely falling frame). To the light of these results, the idea of an external
field effect appears as an artificial construction (possibly related to the specific
mathematical realisations of the theory).
As explained by Mendoza et al. (2011) and Mendoza (2012), one can directly model
many astrophysical observations if the modification is made in the force (gravitational)
sector and not in the dynamical one. To do so, consider a test particle located at a
distance r from a central mass M (it could be the mass within radius r, i.e. M(r)
producing a gravitational field. Since G' and a are fundamental physical constants
related to gravitational phenomena, then the gravitational acceleration experienced by a
test particle is given by
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a =apg(z), where z:= -2, and [y = <G—) . (1)
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The length {3, plays an important role in the description of the theory and is such that
when [y > r, the strong Newtonian regime of gravity is recovered and when [;; < r the
weak MONDian regime of gravity appears. As such, the dimensionless acceleration (or
transition function) g(x) is such that: a/ag = g(x) := 2%, when z > 1 and equals x
when z < 1. A general transition function

1+ $n+1
1+ an 2)

was built by Mendoza et al. (2011). This non-singular function converges to the correct
expected limits for any value of the parameter n > 0. For values n 2> 4 it converges
rapidly to the limit transition step function: g(x) ‘n_m =z for 0 < z <1 and z?, for

x > 1. The parameter n needs to be found empirically by astronomical observations.
The value found by Mendoza et al. (2011) for the rotation curve of our galaxy is n 2 3
and the one found by Hernandez (2012); Hernandez et al. (2012); Hernandez & Jiménez
(2012) is » = 8, with a minus sign selection on the numerator and denominator on the
right hand side of equation (2). These authors have shown that a large value of n is
coherent with solar system motion of planets, rotation curves of spiral galaxies,
equilibrium relations of dwart spheroidal galaxies and their correspondent relations in
globular clusters, the Faber-Jackson relation and the fundamental plane of elliptical
calaxies as well as with the orbits of wide binary stars. The n = 3 model in which a
small, but measurable transition is obtained, has also been tested on earth and moon-like
experiments by Meyer et al. (2011) and Exirifard (2013) respectively, showing that it is
coherent with such precise measurements. In fact, these experiments also validate all

n > 3 models.

g(z) ==z

Relativistic extension

As explained by Mendoza & Olmo (2015) it is possible to find, up to second perturbation
order O(2), with pure theoretical arguments the metric components of a spherically
symmetric space-time where the Tully-Fisher law holds. The ggg = 1+ 2¢/c* = 1 +@) go0
metric time component is obtained from the geodesic equation, which at this
perturbation order for circular orbits is given by: v?/c?r = (1/2)0 ) gy/Or and so, by
using the Tully-Fisher law the metric component ¥ gy can be obtained. The

g1 =1+ 2) gi1 = _i_;p radial component can be obtained without requiring spherical
symmetry, since the spatial part of the metric can be written as g;pdz’dz*, with

(O)gkl = 0, being the Minkowskian part. The second order perturbation corrections of g,
could in principle involve other potentials (and not only ¢ or ). By a suitable choice of
coordinates, one can get rid of the anisotropic contributions at the same perturbation
order, which turns g;; into a diagonal form. Given the isotropy of space, there is no
preferred direction and so ? g o 6;. It is natural to expect that the leading order O(2)
correction must be of the same order of magnitude as the gravitational potential ¢.
Accordingly g = (1 + 2v¢/ 02) 01, where the PPN parameter ~y is a proportionality
constant. Returning to spherical coordinates the end result is that at second
perturbation order:

*
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As noted by Mendoza et al. (2013), over the last few years it has become clear that the
complete phenomenology of gravitational lensing, at the level of extensive massive
elliptical galaxies (see e.g. Gavazzi et al., 2007; Koopmans et al., 2006; Barnabe et al.,
2011), galaxy groups (see e.g. More et al., 2012), clusters of galaxies (see e.g. Newman et
al., 2009; Limousin et al., 2007) and more recently spiral galaxies (see e.g. Dutton et al.,
2011; Suyu et al., 2012) can be accurately modelled using total matter distributions
having isothermal profiles, when treating the problem from the point of view of Einstein’s
general relativity. All these observations show that the dark matter halos needed to
explain gravitational lensing under Einstein’s general relativity obey the same
Tully-Fisher scaling with total baryonic mass as the ones needed to explain the observed
rotation curves of spiral galaxies. This means that for a given total baryonic mass, spiral
and elliptical galaxies and groups of galaxies require dark matter halos having the same
physical properties to explain the observations; from kinematics of rotation curves in the
former case to gravitational lensing in the latter one (Dutton et al., 2011; Suyu et al.,
2012). Under Einstein’s general relativity the majority of these isothermal matter
distribution, particularly at large radii, must be composed of a hypothetical dark matter.
Using then the lens equation for a general metric theory of gravity is then possible to
obtain empirically the metric component gy; with the end result that the PPN parameter

v =1]

Bernal et al. (2011) and Carranza et al. (2013) have constructed an f(x) = x*/?
extended metric theory of gravity which satisfies the metric and v = 1 metric
requirements mentioned above. In their description, a dimensionless Ricci scalar

X = AmR, where Ay o< rgly s an area “coupling term” into the action, R is the
standard Ricci scalar and 7, = GM/c* is the gravitational radius . The weakest field
limit of this theory describes converges in its simplest form to MOND and at second
order perturbation it describes the dynamics of photons through lensing observations of
individual, groups and clusters of galaxies (Mendoza et al., 2013).

Discussion

All together, both relativistic and non-relativistic proposals have shown that the
dynamics of the solar system, elliptical, spherical, dSph galaxies can reproduce the
observations (Mendoza et al., 2011), together with lensing observations (Mendoza et al.,
2013), is capable of describing the dynamics of globular clusters (Hernandez & Jiménez,
2012). This approach has also been used in cosmology without the need to add dark
matter and/or energy entities and is coherent with the current accelerated expansion of
the universe Carranza et al. (2013). We have also shown that a 4th order perturbation
expansion can correctly describe the dynamics of clusters of galaxies Bernal et al. (2015).
The reason to do so can be thought in an analogous way as it occurred when studying the
orbit of Mercury about a century ago. Its motions are mostly understood with Newton’s
theory of gravity. However it was necessary to add relativistic corrections to the
underlying gravitational theory to account for the precession of its orbit. Mercury orbits
at a velocity ~ 50km /s, implying a Lorentz factor of ~ 10™* and already relativistic
corrections are required. Typical velocities of clusters of galaxies are ~ 10°km /s with a
Lorentz factor ~ 1073. This means that the dynamics of clusters of galaxies are about
one order of magnitude more relativistic than the orbital velocity of Mercury and so, if
the latter required relativistic corrections, then the necessity to describe the dynamics of
clusters of galaxies with relativistic corrections are even more important.

The most important lesson to learn from the modified Kepler’s third law (Tully Fisher
law) is that, in the regions where it is applicable, the assumption that gravity is a
geometrical phenomenon and that the Einstein Equivalence Principle holds, are sufficient
to build a model independent approach of the relativistic regime at second perturbation
order O(2), in complete analogy to the one used at solar system scales where the
dynamics are compatible with Einstein’s general relativity.
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