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Galactic Cosmic Rays

@ ry < galactic disk
= E, <108eV

@ Single mechanism
@ SNR shocks?

(m?s'sreV')

Scaled flux E® J(E)

10

10'®

107

10

10'°

10"

10"

Equivalent c.m. enel

rgy \'s,, (GeV)
o

)

10° 10° 1 10° 10°
Jmf \T\\\HH‘ Hufu‘Tw L AR
E RHC D) Tevatron (pp) 7 TeV 14 TeV
L HERA() LHC (pp) v HiRes-MIA
E 4 HiRes|
g 4 HiRes I
[Pt o Auger 2
[ bt g uger 2009
E o «HT
E +
E o,
E  + amc o KASCADE (QGSJET 01) Wéﬁa‘é‘
L« proton = KASCADE (SIBYLL2.1) *
L o Runoe *  KASCADE-Grande 2009 *
E *  Tibet ASg (SIBYLL 2.1) ‘
sl ol ol il il 0l T‘H‘mm
10 10" 10® 10® 107 10" 10® 10® 0%
Energy  (eV/particle)

d’Enterria et al, Astroparticle Phys. (2011)



Galactic Cosmic Rays

@ ry < galactic disk
= E, <108eV

@ Single mechanism
@ SNR shocks?

o DSA:
E, < few x 1015 eV

Scaled flux E*°J(E) (m?s'sr'eV')
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An old story

@ For test particles, DSA too slow: € = ug/ve; < 1, a first order
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@ For test particles, DSA too slow: € = ug/ve; < 1, a first order
Fermi process, (Ap/p ~ €) but tc_yile ~ UgVer /K ~ €wg,
= ta_ci ~ 62wg

@ The problem applies to parallel shocks, where k = k) = nwg
and n 2 1. Particles spend a long time wandering up and

down field lines, without crossing the shock

@ Not so at perpendicular shocks (Jokipii 1987):
K= K] ~ wg/n, so that t, .} ~ ne’w,, which is rapid for
n> 1.
@ Fundamental objection: diffusion approximation valid only for
small anistropy. At a parallel shock, anistropy ~ €. But, for
1n > 1, a perpendicular shock should drive a strong anisotropy.
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Transport model

Diffusion in direction of motion:

g+\7-§f—|— Of _Ven| 1 0 sineg +L&
ot “’gaqs_ 2 |sinf o0 00 sin® 0 0¢?

Valid up/downstream. No deflection by the shock itself.

@ MC simulation. Many papers. Recent ‘full” simulations:
Ellison & Double (2004), Summerlin & Baring (2012).
Nonrelativistic case expensive, only stationary solutions.

@ Expansion in spherical harmonics and finite difference solution:
Bell, Schure & Reville (2011), only stationary solutions.

This work,
@ Analytic approach using eigenfunctions (stationary case).

@ SDE solution (=~ MC), stationary and time-dependent cases.



Stationary solution
Separation of variables:
f(z,B)=p "> e ™/ Qi(u, ¢)
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Stationary solution

Separation of variables:

f(z.p) = P ) cie /" Qi(u, 9)

(o 9 1700 2y 9 L o ;
MG 0@ {55 5 0= 5 g ©

(Oz =V 1- /142 sing, n = wg/Vcoll-)
@ Similar to method used for relativistic shocks (ApJ 2000).
@ But two-parameter (7, u) problem in two-dimensions (i, ¢).

@ Approximate by retaining only the ‘leading’ upstream
eigenfunction.
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Approximate analytic solution for us ~ 1/n ~ € < 1

° Q — e/\V\/l—/_LQ cosqSPSg (N7 _/\2/2)

Ps)': angular, oblate, spheroidal Leading eigenfunction,
wave function. nug = 2,

0 AJ(=A?/2) = N(A+ 2nu)
AM(—~2): spheroidal eigenvalue.

@ Diffusive transport: A ~ ¢

(Fisch & Kruskal 1980). oy,
TR
Here, A ~ €Y. AT
. . , -05 ‘.;......Q...
@ Power-law index fixed by b.c.'s 00 TERELETAY
@ Series in nu: L

Anisotropic at order €,
3r 9(r+1 ted b
( ) 22 10 (774113') as suggested by

S T e e L Schatzman (1963).

(r = compression ratio)



Numerical solution of SDE's

Angular distribution
o 1 =22, us=0.012.
o Upper: [, duf (1, ¢)

o Lower: [Z™d¢f (1, )
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Numerical solution of SDE's

e n=1-100
(10 values)
U = 0.01-0.2,
(30 values)

@ Top: spectral index

o Bottom:
acceleration rate/
DSA (Jokipii)
prediction

dfin (M) /d[In (p)]

log10 (tpsa/tacc)

-0.2

04 |

5= 0.7nug +4

——— Series expansion
Numerical integration

tak = thga/(L.1nus+1.0)
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log10 (nus)
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Conclusions

@ DSA valid only for strong “collisionality” (nus < 1)
@ For weak collisionality: fan beam, opening angle =~ (nus)_1

@ For nug ~ 1, s softens by ~ 1, acceleration rate slows by
factor ~ 2

@ Maximum CR energy for SN in WR-star wind (DSA):

8 Vi

R.Q\ [ B R
=1.7 x 10%u, | = : .
x 107 nu ( Ve > <50G> (3.1012 cm> ev

not changed much provided nug ~ 1.

R.Q
Emax = ET/us <—> eB.R.




