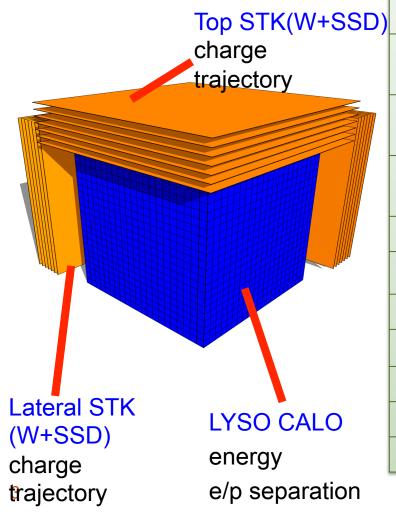

The High Energy cosmic Radiation Detection (HERD) Facility onboard China's Future Space Station

M. Xu^{1, 2}, R. Walter², the HERD collaboration (mingxu@ihep.ac.cn)

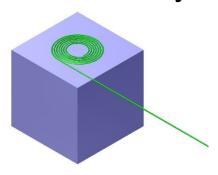
- 1. Key Laboratory of Particle Astrophysics, IHEP, Chinese Academy of Sciences, China
- 2. ISDC, Data Center for Astrophysics, University of Geneva, Switzerland

The 28th Texas Symposium on Relativistic Astrophysics
Geneva
17 December 2015


Introduction

- One of several space astronomy payloads of the cosmic lighthouse program onboard China's Future space station.
- Planned for operation starting around 2020.
- Designed as a next generation space facility focused on:
 - indirect DM search (Better statistical measurements of e/γ between tens of GeV to 10 TeV)
 - Origin of Galactic CR (precise spectrum and composition measurements from 100GeV up to the knee energy)
 - Gamma-ray astronomy (including survey, polarization, monitoring of GRBs, down to 100MeV,)

HERD specifications

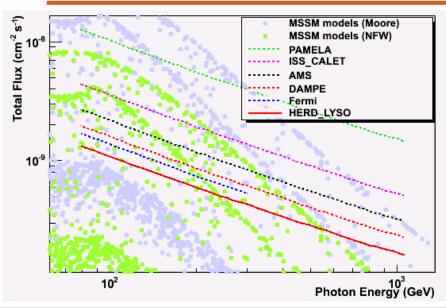

traditional 'top-down" style → 3D & 5 side sensitive, improve Acc.



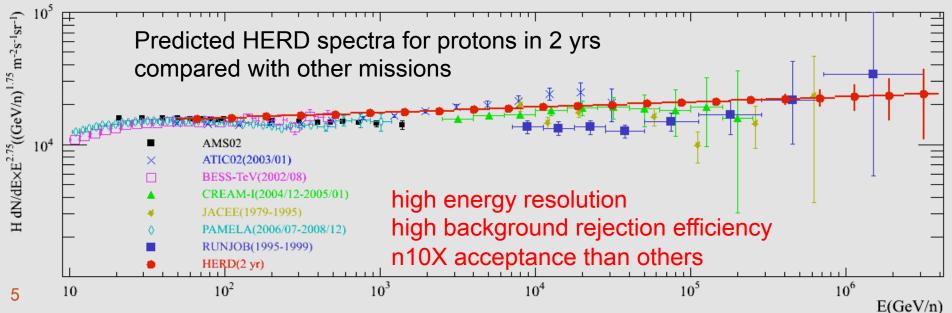
Key & new tech.	High granularity calorimeter with ICCD readout
Calorimeter	10 4 cubic LYSO crystals, 3 * 3 * 3 cm 3 each, 55 X0 , 3 λ 0
Silicon Trackers	7 layers sandwiched with W on all five sides, 2 X0
Energy resolution(e)	< 1% @ 200 GeV (sensitive range: 100 MeV - 10 TeV)
Energy resolution(p)	20% @ 10 GeV – 1 PeV
Acceptance (e/γ)	3.8 m ² sr @ 200 GeV
Acceptance (p)	2.6 m ² sr @ 100TeV
e/p separation	< 10 ⁻⁵
Charge resolution	0.1 c.u.
Angular resolution	0.1° (>10GeV)
Weight	~2800 kg
Power	~1500 W

Technical solution

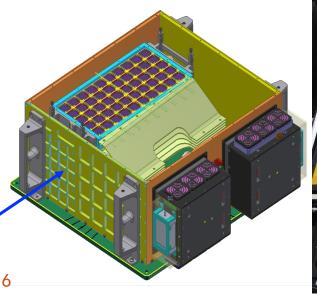
LYSO Crystal + WLS fiber



▶ WLSF + ICCD



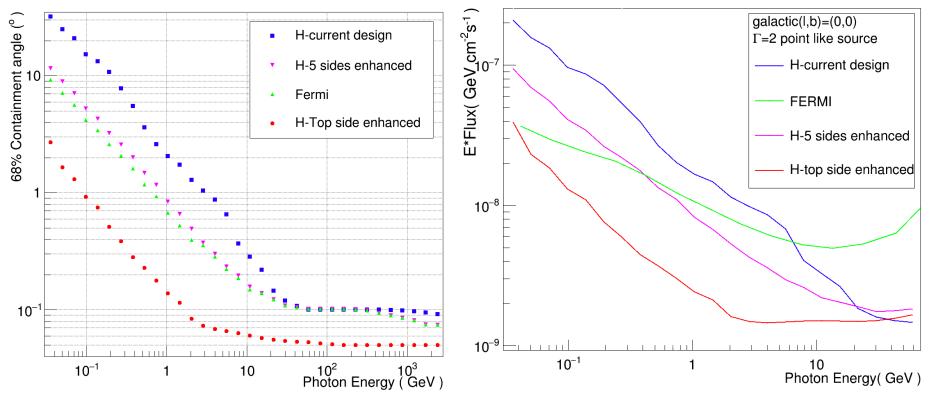
Expected performances (DM, CR)


DM gamma-ray line sensitivity (1 yr) in comparison with other missions with operation periods:

```
2006-2016(PAMELA);
2011-2021 (AMS02);
2016-2021 (CALET, DAMPE);
2008-2018 (Fermi);
2020-2021 (HERD)
```


HERD prototype beam test @ CERN SPS

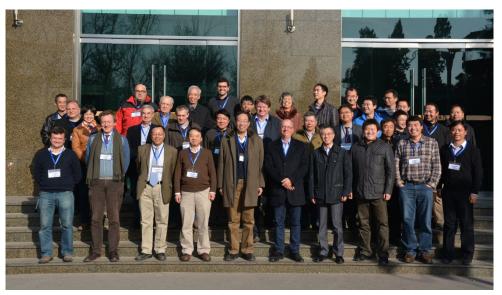
- 1/40 CALO prototype for beam test at CERN SPS in November 2015
- To validate the hardware and software, and at the same time the performance of the design
- 8M events from proton, electron and fragmentation particles of primary Pb ions on a production target were collected at energies from several tens of GeV up to 400 GeV
- Data analysis is under processing



		3	3 "	
9		•		
			·	
	23/10			à .F
		S. Salar Marie Co.	Back Co.	

Time	Beam Particle		
Start Time	Туре	Р	
2015/Nov/	1,700	(GeV/c)	
(D/h:m)		(301/0)	
13/00:38	pion+	50	
13/04:46	e-	200	
13/09:02	beam tuning by CCC		
13/12:41	proton	400	
13/18:42	pion+	50	
13/20:00	no beam		
13/23:39	pion+	50	
14/02:50	proton	350	
14/09:23	e-	150, 100, 50, 40,	
		10	
14/23:16	pion+	50	
15/03:17	ė-	30 ,20, 10, 250	
15/13:58	e+	100	
15/15:27	no beam		
15/16:43	e-	100, 50	
15/21:11	e+	50	
15/22:30	e-	80GeV	
15/23:30	pion+	50	
16/03:38	proton	350	
16/05:30	e-	200	

Extended Optimization for Gamma-ray Astronomy


~100 MeV to higher energy, the performance of angular resolution is the first priority for gamma-ray astronomy,

- Current STKs design: 7 layers, 2 X0, same five sides covered.
- All five side enhanced STKs: 15 layers, 1 X0, enhanced for all five sides.
- Top side enhanced STKs: 30 layers, 0.5 X0, enhanced only for top side.

With an enhanced design of STKs, HERD will have adequate capability for gamma-ray (survey, transient monitor, polarization), and be the most sensitive instrument in space in the post-Fermi era.

HERD collaboration

- 100 collaborators, 20 institutes and universities
- From China, Italy, Switzerland, Sweden and USA
- PI, Shuangnan ZHANG, Institute of High Energy Physics (IHEP Beijing)

2nd HERD workshop, 2013.12.2, Beijing

HERD Beam Test, 2015.11.11-20, CERN

3rd HERD workshop, 2016.01.18-20, Xi'An, China Welcome!