# Dynamical mass ejection from black hole-neutron star binaries

#### Koutarou Kyutoku RIKEN, iTHES

KK, Ioka, Shibata PRD 88 (2013) 041502(R)

KK, Ioka, Okawa, Shibata, Taniguchi PRD 92 (2015) 044028

## Why do we investigate BH-NS?

- Gravitational-wave astronomy accessible to a larger distance than with NS-NS
- Short gamma-ray burst

formation of a BH-hot, massive accretion disk system many possibilities due to the BH mass/spin diversity

• Mass ejection

r-process nucleosynthesis

agent of electromagnetic emission = EM counterpart

#### Poor gravitational-wave localization

Typically ~20-30 deg^2 by multiple GW detectors

-> need EM counterparts for accurate localization



#### Electromagnetic counterpart



Drawn originally by Kenta Hotokezaka

#### Problem to be answered

- How the mass is ejected in the merger process of black hole-neutron star binaries?

- What are characteristic quantities of ejecta? (mass, velocity, morphology, electron fraction...)

- How do they depend on binary parameters?

- What are features of associated electromagnetic counterparts?

#### Numerical-relativity simulations will give answers

#### Numerical method

Initial data: LORENE (spectral method) quasiequilibrium states of BH-NS binaries

Dynamical simulation: SACRA (Yamamoto+ 2008)

- BSSN formalism of the Einstein equation
   4th order finite difference in time and space
- ideal hydrodynamics

3rd order PPM reconstruction + central scheme

- adaptive mesh refinement

#### Important parameters

Three dimensionless parameters

- 1. NS compactness:  $C \equiv M_{\rm NS}/R_{\rm NS}$
- 2. Mass ratio of the BH to NS:  $Q \equiv M_{BH}/M_{NS}$
- 3. Dimensionless BH spin:  $\chi \equiv a_{\rm BH}/M_{\rm BH}$

For a fixed value of the NS mass, tidal disruption if

- 1. The NS radius is large, i.e., C is small
- 2. The BH mass is small, i.e., Q is small
- 3. The BH spin is large, i.e.,  $\chi$  is large

#### Model parameters

NS mass fixed to be  $M_{\rm NS} = 1.35 M_{\odot}$ 

NS radius = equation of state  $R_{NS} = 11.1, 12.4, 13.6, 14.4$ km

piecewise polytrope (+ ideal-gas-like thermal part)

Mass ratio 
$$Q = 3, 5, 7$$
  
 $M_{BH} = 4.05, 6.75, 9.45 M_{\odot}$ 

BH spin parameter  $\chi = 0, 0.5, 0.75$  and prograde

### Crescent-like ejecta anisotropy



#### **Comparison with NS-NS**

#### Density profile in the meridional plane



# NS-NS: hypermassive NS BH-NS: BH-disk (but the reality depends on HMNS/disk winds)

#### BH-NS Ejecta is very cold

#### 2nd and 3rd peaks of r-process would be formed



28th Texas Symposium

#### Ejecta mass

The ejecta mass is large when the NS radius is large



#### Mass ratio dependence

The ejecta mass to disk mass ratio increases

as the mass ratio increases (maybe realistic cases)



#### Average velocity of the ejecta

Also tends to increases as the mass ratio increases

-> the ejecta from a large Q binary is energetic



# Bulk velocity of the ejecta

The ejecta has a bulk linear momentum and velocity



#### Kick velocity of the remnant BH

Two kinds of "kick velocity" of the remnant BH - ejecta kick: large for strong disruption

$$V_{\rm ej} \approx \frac{P_{\rm ej}}{M_{\rm remnant}}$$

- gravitational-wave kick: large for weak disruption

$$V_{\rm GW} \approx \frac{P_{\rm GW}}{M_{\rm remnant}}$$

# Anti-correlation of the kick direction



# Which of two kick velocities wins?

| Threshold a                                                           | at $M_{\rm ej} \approx 0.01 M_{\odot}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | API<br>ALI<br>H                                                                                                     |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| The ejecta k<br>be as large                                           | kick velocity could<br>as ~1000km/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MS<br>AP<br>AL<br>H<br>MS<br>AP<br>AL                                                                               |
| 1000<br>Escape velocity of<br>galaxies and<br>globular clusters<br>10 | = En $A = E $ $A =$ | H<br>Mi<br>API<br>ALI<br>H4<br>MS<br>AP<br>AL<br>API<br>ALI<br>H4<br>MS<br>API<br>ALI<br>H4<br>MS<br>AP<br>AL<br>MS |

#### Kyutoku+ (2015)

| Model      | $M_{\rm ej}[M_{\odot}]$ | $V_{\rm ej}~({\rm kms^{-1}})$ | $V_{\rm GW}~({\rm kms^{-1}})$ |
|------------|-------------------------|-------------------------------|-------------------------------|
| APR4-Q3a75 | 0.01                    | 100                           | 90                            |
| ALF2-Q3a75 | 0.05                    | 500                           | 60                            |
| H4-Q3a75   | 0.05                    | 500                           | 60                            |
| MS1-Q3a75  | 0.07                    | 800                           | 20                            |
| APR4-Q3a5  | $2 \times 10^{-3}$      | 20                            | 70                            |
| ALF2-Q3a5  | 0.02                    | 300                           | 70                            |
| H4-Q3a5    | 0.03                    | 300                           | 50                            |
| MS1-Q3a5   | 0.05                    | 600                           | 50                            |
| APR4-Q3a0  | $2 \times 10^{-5}$      | < 1                           | 60                            |
| ALF2-Q3a0  | $3 \times 10^{-3}$      | 20                            | 30                            |
| H4-Q3a0    | $6 \times 10^{-3}$      | 70                            | 40                            |
| MS1-Q3a0   | 0.02                    | 200                           | 40                            |
| APR4-Q5a75 | $8 \times 10^{-3}$      | 30                            | 20                            |
| ALF2-Q5a75 | 0.05                    | 400                           | 40                            |
| H4-Q5a75   | 0.05                    | 400                           | 70                            |
| MS1-Q5a75  | 0.08                    | 700                           | 50                            |
| APR4-Q5a5  | $9 \times 10^{-5}$      | < 1                           | 30                            |
| ALF2-Q5a5  | 0.01                    | 30                            | 30                            |
| H4-Q5a5    | 0.02                    | 200                           | 50                            |
| MS1-Q5a5   | 0.05                    | 400                           | 50                            |
| APR4-Q7a75 | $5 \times 10^{-4}$      | < 1                           | 40                            |
| ALF2-Q7a75 | 0.02                    | 40                            | 30                            |
| H4-Q7a75   | 0.04                    | 200                           | 40                            |
| MS1-Q7a75  | 0.07                    | 400                           | 30                            |
| APR4-Q7a5  | $3 \times 10^{-6}$      | < 1                           | 30                            |
| ALF2-Q7a5  | $2 \times 10^{-4}$      | < 1                           | 30                            |
| H4-Q7a5    | $3 \times 10^{-3}$      | 6                             | 20                            |
| MS1-Q7a5   | 0.02                    | 30                            | 20                            |

Mv

#### Bright macronova/kilonova

For spherical ejecta (Li-Paczynski 1998)

The peak luminosity:  $L_{\text{peak}} \propto f \kappa^{-1/2} M^{1/2} v^{1/2}$ The peak time :  $t_{\text{peak}} \propto \kappa^{1/2} M^{1/2} v^{-1/2}$ 

Heating efficiency f and opacity  $\kappa$  – microphysics important quantities, but are not discussed here Ejecta mass M and ejecta velocity v – NR simulation large ejecta mass -> bright and long emission

# Effect of anisotropy



#### Viewing-angle dependence High luminosity $L_{\text{peak}} \sim f M_{\text{ej}}/t_{\text{peak}} \sim 10^{41} \text{ erg/s}$ 1500 10 KK+ (2013) v=0.5c --9 low luminosity 1000 z (km) 8 $\sim \theta_{\rm ej} L_{\rm peak}$ 7 500 10<sup>42</sup> 6 APR4Q3a75 UVOIR luminosity (erg s<sup>-1</sup>) Average 5 +Z 10<sup>41</sup> 1000 500 1500 -X polarization? 10<sup>40</sup> radiation transfer deformed (3D Monte Carlo) photosphere Tanaka, KK+ (2014) 10<sup>39</sup> 10 Days after the merger

### Standing spiral shock in the disk

#### Formed as a result of the self-collision of tidal tail Drive mass accretion even for the perfect fluid



#### Fallback material

"canonical" power law with the index -5/3



#### Summary

- Black hole-neutron star binary mergers can eject  $\sim 0.01 0.1 M_{\odot}$  with 0.2 0.3c dynamically in various cases particularly when the NS radius is large (the equation of state is stiff).
- BH-NS ejecta are anisotropic, are concentrated within a small angle around the orbital plane, and carry nonzero linear momenta.
- Anisotropy of the ejecta could bring diversity to electromagnetic counterparts.

# Why do we need EM counterparts?

One GW detector cannot localize the GW source



### Triangulation by a detector network

Determine the sky position from timing difference



# Near-infrared excess of GRB 130603B

#### Ejecta mass $M_{\rm ej} = 0.02 \sim 0.1 M_{\odot}$ may be required



#### Mass ejection channel

Dynamical mass ejection: this study we can study with gravity+pure hydrodynamics sometimes obviously dominates disk winds

Disk activity (winds): ongoing study

- nuclear heating
- viscous heating (Shibata-san)
- magnetically driven wind (Kiuchi-san)
- neutrino driven wind (Sekiguchi-san)

#### **Newtonian BH-NS simulation**

# Episodic (repeated stable) mass transfer

qualitatively different from full GR results



#### **R-process nucleosynthesis**

#### GR sometimes changes the situation qualitatively

#### e.g., nucleasynthesis in NS-NS dynamical ejecta



# Why successful r-process?

Broad distribution of electron fraction in full GR



#### GR NS-NS ejecta

s [kg]

SEL a 5m

20

Ye 0.3

0.4

The electron fraction can be increased by strong shock heating (and also neutrino irradiation)



#### EOS dependence of NS-NS ejecta

Ejecta are massive when the NS radius is small due to violent activity of a compact remnant NS



#### **GRSPH** simulation

Independent confirmation with approx. GR

shock ejection is important (suppress tidal ejection)



## Merger dynamics

inspiral due to GW backreaction

NS deformation due to tidal force further drive the inspiral motion

 $r_{tidal} > r_{ISCO}$ : tidal disruption mass ejection, disk formation...

# $r_{\rm tidal} < r_{\rm ISCO}$ : like BH-BH

)))

### Mass shedding condition

1. BH tidal force=NS self gravity at the NS surface

$$\frac{M_{\rm BH}R_{\rm NS}}{r_{\rm tidal}^3} \sim \frac{M_{\rm NS}}{R_{\rm NS}^2} \Rightarrow r_{\rm tidal} \sim M_{\rm BH} \left(\frac{M_{\rm NS}}{M_{\rm BH}}\right)^{2/3} \left(\frac{R_{\rm NS}}{M_{\rm NS}}\right)$$

- 2. BH innermost stable circular orbit w/ spin  $\chi$  $r_{\rm ISCO} = \hat{r}(\chi)M_{\rm BH}$  ( $\hat{r}$  is a decreasing function of  $\chi$ )
- 3. Disruption if this value is large  $\frac{r_{\text{tidal}}}{r_{\text{ISCO}}} \sim \frac{1}{\hat{r}(\chi)} \left(\frac{M_{\text{NS}}}{M_{\text{BH}}}\right)^{2/3} \left(\frac{R_{\text{NS}}}{M_{\text{NS}}}\right)$   $r_{\text{ISCO}} \sim r_{\text{tidal}}$

#### Neutron star mass



#### Neutron star radius

No firm conclusion, but may not be very large



#### Black hole mass

Mass gap around  $3 - 5M_{\odot}$  is frequently debated



#### Black hole spin

#### Uncertain but no typical value exists

McClintock+ (2014)

| System           | $a_*$                  | $M/M_{\odot}$    | References                                  |
|------------------|------------------------|------------------|---------------------------------------------|
| Persistent       |                        |                  |                                             |
| Cyg X-1          | > 0.95                 | $14.8 \pm 1.0$   | Gou et al. 2011; Orosz et al. 2011a         |
| LMC X-1          | $0.92^{+0.05}_{-0.07}$ | $10.9 \pm 1.4$   | Gou et al. 2009; Orosz et al. 2009          |
| M33 X-7          | $0.84 \pm 0.05$        | $15.65 \pm 1.45$ | Liu et al. 2008; Orosz et al. 2007          |
| Transient        |                        |                  |                                             |
| GRS $1915 + 105$ | $> 0.95^{b}$           | $10.1\pm0.6$     | McClintock et al. 2006; Steeghs et al. 2013 |
| $4U \ 1543 – 47$ | $0.80\pm0.10^{b}$      | $9.4 \pm 1.0$    | Shafee et al. 2006; Orosz 2003              |
| GRO J1655 $-40$  | $0.70\pm0.10^{b}$      | $6.3\pm0.5$      | Shafee et al. 2006; Greene et al. 2001      |
| XTE J1550–564    | $0.34_{-0.28}^{+0.20}$ | $9.1\pm0.6$      | Steiner et al. 2011; Orosz et al. 2011b     |
| H1743–322        | $0.2\pm0.3$            | $\sim 8^c$       | Steiner et al. 2012a                        |
| LMC X-3          | $< 0.3^d$              | $7.6 \pm 1.6$    | Davis et al. 2006; Orosz 2003               |
| A0620-00         | $0.12\pm0.19$          | $6.6\pm0.25$     | Gou et al. 2010; Cantrell et al. 2010       |

#### **Characteristic quantities**

#### Ejection is efficient when the NS radius is large

opposite to NS-NS mass ejection (Hotokezaka, KK+ 2013)

10 Kyutoku+ (2013) v=0.5c -ejecta mass 1000 9  $(0\sim)0.08M_{\odot}$  $v_{\rm ej} \sim P_{\rm ej}$ 8 (km) kinetic energy 0 7  $(0\sim)5 \times 10^{51}$ erg 6 "bulk" velocity -1000 Only unbound material 5  $v_{\rm ej} \sim 0.2c$ 1000 -1000 0 x (km) 2015/12/15 28th Texas Symposium

### Mass left outside the black hole

Nicely correlated with the NS compactness (radius)



### Velocity distribution

# Relatively flat w/ cutoffs rather than a power law seems to be distinct from NS-NS ejecta



#### Reason of the power-law index 5/3

Orbital period – semimajor axis – binding energy  $P \propto a^{3/2} \propto |E|^{-3/2}$ 

The fallback rate ~ the period distribution  

$$\dot{M} = \frac{dM}{dP} = \frac{dM}{dE} \frac{dE}{dP} \propto \frac{dM}{dE} P^{-5/3} = \frac{dM}{dE} t^{-5/3}$$

Why dM/dE is constant? Not fully understand yet [e.g., Lodato+ (2009) for SMBH-MS disruption]

# Leading candidate of EM counterpart

- (Short-hard gamma-ray burst)
- Macronova/kilonova
   IR-optical flare on a week time scale
   driven by decay of unstable r-process elements
- Synchrotron radio flare
   radio(-opt, X) emission on a decade time scale
   emitted by nonthermal electrons in magnetic fields

#### Synchrotron radio emission

Ejecta decelerate when accumulate  $M_{ej}$  from ISM For a spherical ejecta (with  $n_{\rm H} = 1 \,{\rm cm}^3$ )  $R_{\rm dec,s} \sim \left(3M_{\rm ei}/4\pi m_{\rm p}n_{\rm H}\right)^{1/3} \sim 0.7 {\rm pc}$ <sup>*K*</sup>dec,s  $t_{\rm dec.s} \sim R_{\rm dec.s} / v \sim 7 {\rm yr}$ For crescent-like BH-NS ejecta  $R_{\rm dec} \sim 1.7 \,{\rm pc} \,\theta_{\rm ej,1/5}^{-1/3} \varphi_{\rm ej,\pi}^{-1/3}$  $t_{\rm dec} \sim 18 {\rm yr} \, \theta_{\rm ej,1/5}^{-1/3} \varphi_{\rm ej,\pi}^{-1/3}$ 

#### Proper motion of radio images

# Typical proper motion in terms of the angle $v_{\rm ej}t_{\rm dec}/D \sim 1 {\rm pc}/100 {\rm Mpc} \sim 1 {\rm mas}$



#### **Possible explanation**

Opposite motion of the ejecta <-> plunge material

Plunge motion: fastest in the coalescence

dominant to the recoil



#### **Quasiuniversal relation**

Might differ from NS-NS relations (Read, KK+ 2013)



#### GW memory

In addition to nonlinear and GRB jet memory

"ejecta memory" by  $M_{\rm ej} \sim 0.01 - 0.1 M_{\odot}, v_{\rm ej} \sim 0.2c$  $\delta h \sim \frac{2M_{\rm ej} v_{\rm ej}^2}{D} \sim 10^{-24} \left(\frac{M_{\rm ej}}{0.03M_{\odot}}\right) \left(\frac{v_{\rm ej}}{0.2c}\right)^2 \left(\frac{D}{100 \,{\rm Mpc}}\right)^{-1}$ 

Detectable by ET for massive ejecta with  $\geq 0.1 M_{\odot}$ 

Former two are weak along the rotational axis Ejecta memory is strongest along this axis