



# Pulsar Observations with the MAGIC telescopes

Takayuki Saito<sup>a</sup>

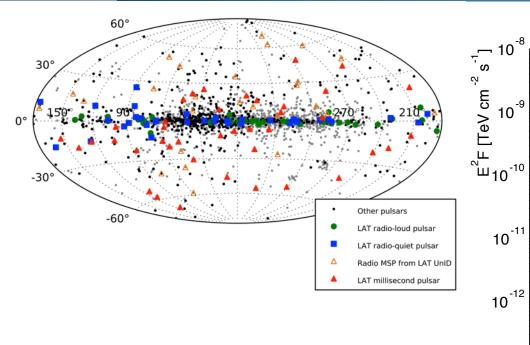
S. Bonnefoy<sup>b</sup>, F. Dazzi<sup>c</sup>, D. Fidalgo<sup>b</sup>, D. Galindo<sup>d</sup>, J. Rodriguez Garcia<sup>c</sup>, M. Lopez<sup>b</sup>, E. Moretti<sup>c</sup>, E. de Ona Wilhelmi<sup>e</sup>, I. Reichardt<sup>f</sup>, T. Schweizer<sup>c</sup>, R. Zanin<sup>d</sup>
On behalf of the MAGIC collaboration

- a) Kyoto University, Hakubi center, Japan
- b) Universitad Compultense, Madrid, Spain
- c) Max-Planck-Institut fuer Physik, Muenchen, Germany
- d) Universitat de Barcelona, ICC/IEEC-UB, Barcelona, Spain
- e) Institute for Space Sciences (CSIC/IEEC), Barcelona, Spain
- f) Universita di Padova and INFN, Padova, Italy

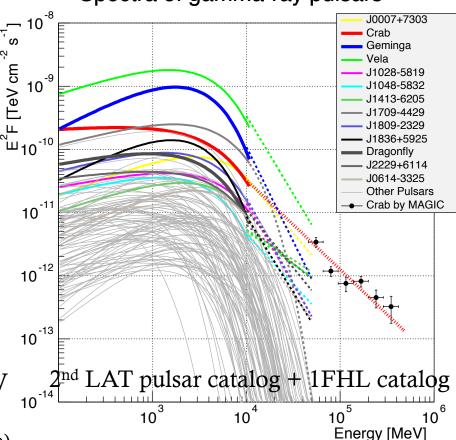




#### Outline



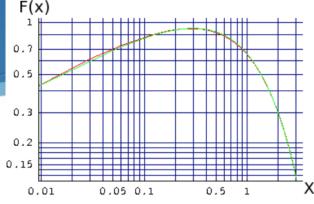

- **♦** Introduction
  - ♦ Gamma-ray Pulsars and emission mechanism
  - MAGIC telescopes
- Detection of TeV pulses from the Crab pulsar
- Observation of the Geminga pulsar






#### Gamma ray pulsars








- $\sim$ 150 Pulsars detected by LAT > 100 MeV
- 12 pulsars by LAT > 25 GeV
- Only 2 are detected by IACTs (Crab and Vela)
- In general, spectra show cutoff at a few GeV

### Gamma-ray Emission mechanism

Why cutoff at GeV?



Curved B field

**Curvature Radiation** 

Curvature Radiation spectrum from an electron with energy  $\Gamma$  mc<sup>2</sup> shows a power law with exponential cutoff at

$$E_c = \frac{3}{2} \Gamma^2 \hbar \frac{eB'}{mc} = \frac{3}{2} \Gamma^3 \frac{\hbar c}{R_{\text{curren}}} \sim \text{GeV} (\Gamma \sim 10^7)$$

In the case of Synchro-Curvature radiation, spectral shape is basically the same with a cutoff at

$$E_c = \frac{3}{2} \Gamma^3 \frac{\hbar c}{R_{curv}} Q$$

$$E_{c} = \frac{3}{2} \Gamma^{3} \frac{\hbar c}{R_{curv}} Q$$

$$Q = \cos^{2} \alpha \left( 1 + 3\xi + \xi^{2} + \frac{R_{gyr}}{R_{curv}} \right)$$

$$\xi = \frac{R_{curv}}{R_{gyr}} \frac{\sin^{2} \alpha}{\cos^{2} \alpha}$$
(Vigano et al.)

(Vigano et al MNRAS 2015)

Synchro-Curvature Radiation

If electrons are mono energetic and field curvature is the same, pure exponential cutoff is expected from outer gap emission.







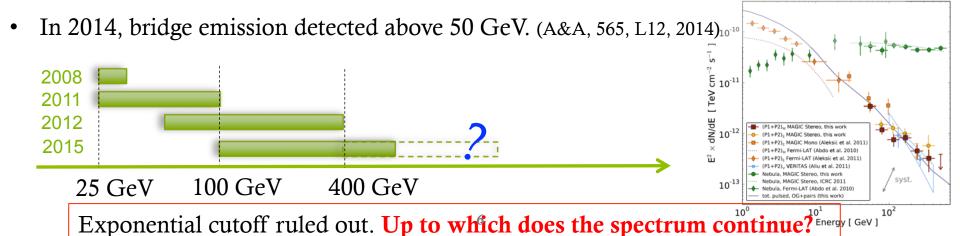


- ◆ At LaPalma, Canary, Spain at 2250 m a.s.l.
- ◆ 2 Imaging atmospheric Cherenkov Telescopes (IACT) with a 17 m dish
  - 1st Telescope operational since 2004
  - Stereo observation since 2009
- Stereo performance:
  - Energy range: 50 GeV a few tens of TeV
  - Integral sensitivity above 220 GeV: 0.66% C.U.
  - Angular resolution: 0.1 0.05 degrees
  - Energy resolution: 15-24%

All performance parameters available in Aleksic et al., Aph 72 76, 2016



#### Crab Pulsar and MAGIC



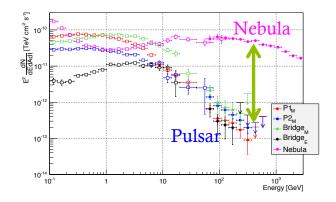

(a) Crab Pulsar, P1+P2

>25 GeV

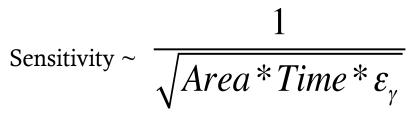


- In 2011, VERITAS detected pulsation above 100 GeV. (Science 334, 69, 2011)
- In 2011, spectral measurement at 25 100 GeV with mono-MAGIC (ApJ 742, 42, 2011)
- In 2012, spectral measurement at 50 400 GeV with stereo-MAGIC
  - Curvature Radiation questioned (A&A 540, A69, 2012)

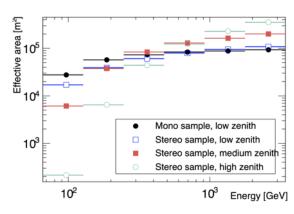







Normally,
$$Sensitivity \sim \frac{1}{\sqrt{Area*Time}} \frac{\sqrt{\varepsilon_{BG}}}{\varepsilon_{v}}$$

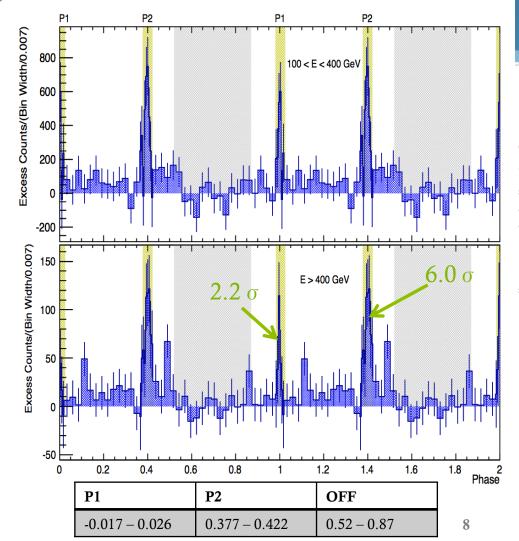

Stereo sensitivity is better than Mono because  $\mathcal{E}_{BG}$  can be largely reduced by better hadron/gamma separation and angular resolution.



But for the Crab pulsar above ~300 GeV, BG is fully dominated by gamma-rays from Crab nebula. Therefore,



Therefore, mono observations are equally important as stereo observations.




28th Texas Symposium @Geneva, Takayuki Saito





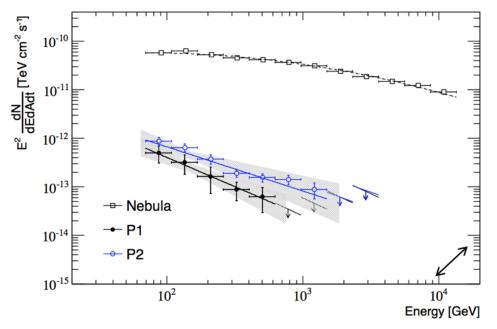




- Mono 97 hours
- Stereo 221 hours
- Cuts are optimized for nebula BG

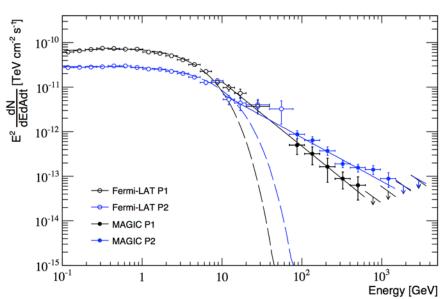
**Table 1.** Number of excess events and corresponding significance of P1 and P2 for different energy ranges in  $\sim$ 320 hours of data.

| energy range | P1       |              | P2           |              |
|--------------|----------|--------------|--------------|--------------|
| [GeV]        | $N_{ex}$ | Significance | $N_{ex}$     | Significance |
| 100-400      | 1252±442 | $2.8 \sigma$ | 2537±454     | $5.6 \sigma$ |
| > 400        | 188±88   | $2.2 \sigma$ | $544 \pm 92$ | $6.0 \sigma$ |
| > 680        | 130±66   | $2.0~\sigma$ | 293±69       | $4.3 \sigma$ |
| > 950        | 119±54   | $2.2 \sigma$ | 190±56       | $3.5 \sigma$ |


#### Profile above 400 GeV

| P1 Peak Phase | 0.9968+-0.0020 <sub>stat</sub> +-0.005 <sub>sys</sub>  |
|---------------|--------------------------------------------------------|
| P2 Peak Phase | $0.4046 +- 0.0035_{\text{stat}} +- 0.006_{\text{sys}}$ |
| P1 FWHM       | $0.010+-0.003_{\rm stat}+-0.002_{\rm sys}$             |
| P2 FWHM       | $0.040 + -0.009_{\text{stat}} + -0.007_{\text{sys}}$   |



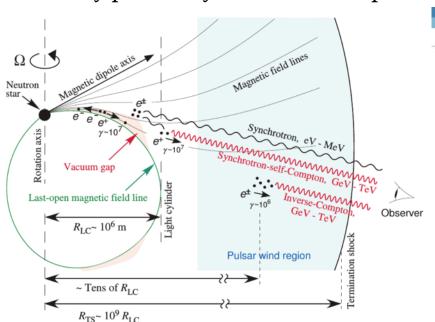


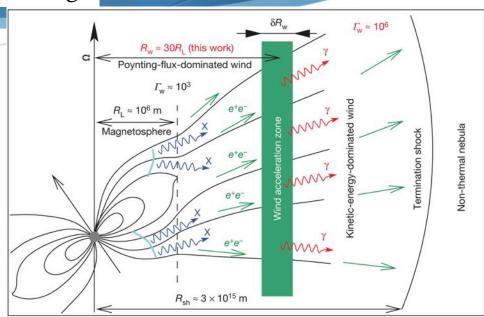

#### Energy Spectrum



|           |    | Eo    | $f_{ m E_o}$                                       | α             | $\chi^2/\text{dof}$ |
|-----------|----|-------|----------------------------------------------------|---------------|---------------------|
|           |    | [GeV] | $[\text{TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}]$ |               |                     |
| MAGIC     | P1 | 150   | $(1.1\pm0.3)\times10^{-11}$                        | 3.2±0.4       | 0.3/3               |
|           | P2 | 150   | $(2.0\pm0.3)\times10^{-11}$                        | $2.9 \pm 0.2$ | 5.4/5               |
| Fermi-LAT | P1 | 50    | $(5.3\pm0.8)\times10^{-10}$                        | 3.5±0.1       | 1.5/6               |
| & MAGIC   | P2 | 50    | $(5.7\pm0.6)\times10^{-10}$                        | $3.0\pm0.1$   | 8.4/9               |

- Broken Power law between 100 MeV and 1 TeV.
- Fermi+MAGIC combined fit suggests softer spectrum of P1 than P2.




### Physics Interpretation



The only possibility is Inverse Compton scattering.



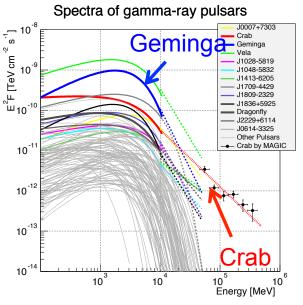


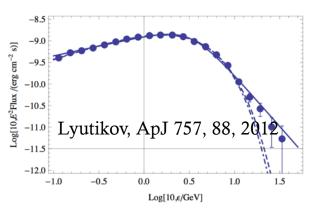
Magnetospheric Cascade model (Hirotani, ApJ 766, 98 2013)

multi TeV electrons -> IC on ambient IR photons

- -> multi TeV photons -> absorbed by IR photons
- -> cascade

Wind scattering model (Aharonian et al., Nature 482, 507, 2012)


Pointing Flux->plasma wind -> IC pulsed X-ray photon


But none of the models can explain the narrow peaks and simultaneous LC....

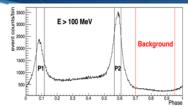


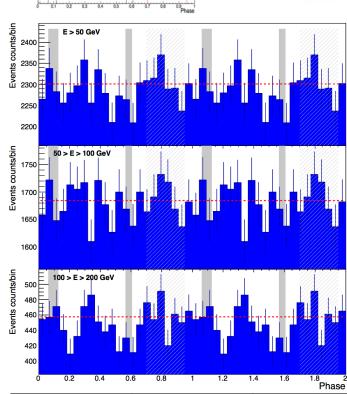


#### Geminga Pulsar






|          | Crab        | Geminga     |
|----------|-------------|-------------|
| P        | 34 ms       | 237 ms      |
| dP/dt    | 4.2e-13 s/s | 1.1e-14 s/s |
| $R_{LC}$ | 1600 km     | 11300 km    |
| Age      | 1000 years  | 3e5 years   |
| $B_0$    | 4e12 G      | 1.6e12 G    |
| $B_{LC}$ | 950 kG      | 1.1 kG      |
| $L_{sp}$ | 5e38 erg/s  | 3e34 erg/s  |
| Distance | 2 kpc       | 250 pc      |


- Totally different property than Crab.
- At 3 GeV, 5 times brighter than Crab
  - Due to short distance?
- Power-law-like extension after the break is reported based on Fermi data
- 25 GeV pulsation is also detected



### Geminga Observation



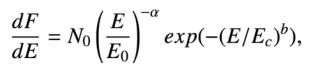




 P1
 P2
 OFF

 0.066 ~ 0.118
 0.565 - 0.607
 0.7 - 0.95

- Observation between Dec. 2012 and March 2013
- 63 hours after selection
- Definition of P1 (P2) phase was derived by fitting Asymmetric Gaussian to the LAT light curve above 5 (10) GeV (+- 1  $\sigma$  ).
- No signal found


| Energy range (GeV) | P1           | P2           | P1 + P2      |
|--------------------|--------------|--------------|--------------|
| ≥ 50               | $0.2\sigma$  | $-0.1\sigma$ | $0.1\sigma$  |
| 50-100             | $-0.2\sigma$ | $0.2\sigma$  | $0.0\sigma$  |
| 100-200            | $0.7\sigma$  | $-1.4\sigma$ | $-0.3\sigma$ |



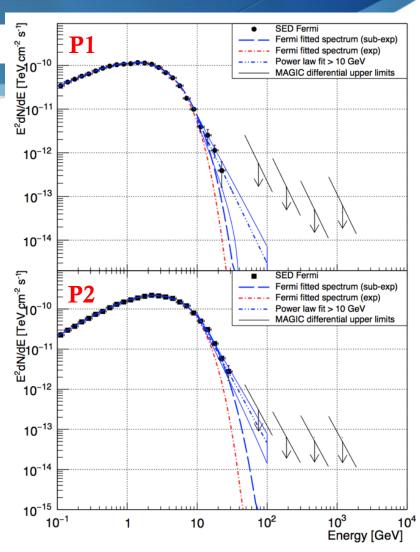
#### Hakubi Kyoto Univ.

#### Flux Upper Limits

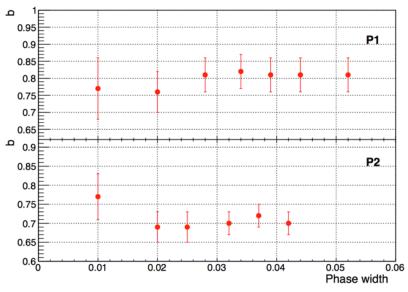
• Cutoff power law fit to LAT data above 0.1 GeV



|    | $N_0$          |                                  | $E_c$ [GeV]   |                 | _            |
|----|----------------|----------------------------------|---------------|-----------------|--------------|
| P1 | $3.0 \pm 0.3$  | $1.12 \pm 0.04 \\ 0.78 \pm 0.03$ | $1.2 \pm 0.1$ | $0.81 \pm 0.04$ | _            |
| P2 | $4.3 \pm 0.4$  | $0.78 \pm 0.03$                  | $1.1 \pm 0.1$ | $0.70 \pm 0.03$ | <b>←</b> < 1 |
| PA | $28.3 \pm 1.8$ | $0.94 \pm 0.02$                  | $0.8 \pm 0.1$ | $0.67 \pm 0.02$ |              |


Power law fit to LAT data above 10 GeV

$$\frac{dF}{dE} = N_0 (E/10GeV)^{-\alpha}$$


|    | $N_0$                          | $\alpha$      |                 |
|----|--------------------------------|---------------|-----------------|
| P1 | $(5.9 \pm 1.4) \times 10^{-5}$ | $5.3 \pm 0.7$ |                 |
| P2 | $(7.2 \pm 0.1) \times 10^{-4}$ | $5.2 \pm 0.3$ | $N_0 [10^{-1}]$ |

 $N_0 [10^{-10} MeV^{-1}s^{-1}cm^{-2}]$ 

- P2 limits are close to but slightly above the power law extension.
- Lowering the energy threshold is important.



## More Fermi-LAT data analysis

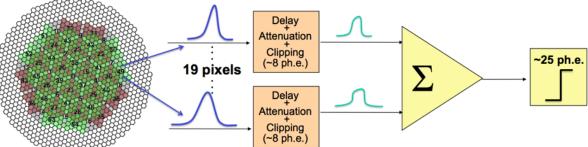


$$\frac{dF}{dE} = N_0 \left(\frac{E}{E_0}\right)^{-\alpha} exp(-(E/E_c)^b),$$

"**b**" should be 1, if emission comes from monoenergetic electrons at the same place.

Smaller **b** could be explained as the sum of different cutoff energies from different phases.

But **b** is significantly smaller than 1 even with phase width 0.01.


This may constrain the 3D modeling of the pulsar magnetosphere.

# Lowering MAGIC threshold



The sum trigger-II

To detect Geminga, lowering the energy threshold is needed.



In order to lower the energy thresholds,

- new trigger system have been installed
- new analysis technique is being studied right now





#### Conclusion

- By analyzing archival data, MAGIC detected pulsation up to TeV energies from the Crab pulsar.
  - Gamma-ray spectrum from 100 MeV to 1 TeV can be described as a broken power law.
  - The only possible emission mechanism is Inverse Compton scattering.
  - However, no model can explain both the spectrum and pulse shape simultaneously.
- MAGIC observed the Geminga pulsar for 63 hours.
  - No signal has been found.
  - Fermi-LAT data suggest a power law like extension after the break at a few GeV. Index is ~ -5
  - Flux upper limit set by MAGIC is close to the extension.
  - Lowering the energy threshold is the key to detect Geminga and we are working on that.